
1

RDCS423 Tutorial Problems & Solutions #1 - Real-Time Scheduling Theory

1. Consider the case of three periodic tasks:

 Task t1: C1 = 20 ms; T1 = 100 ms
 Task t2: C2 = 40 ms; T2 = 150 ms
 Task t3: C3 = 100 ms; T3 = 350 ms

 Apply the Utilization Bound Theorem to determine if these tasks are schedulable using a

rate monotonic scheduling strategy. Suppose the computation time for task 1 doubles to
40 msec, now determine if the tasks are schedulable, and then apply the less
conservative Completion Time Theorem.

2. Suppose we have four tasks: two periodic, one aperiodic, and one interrupt driven

aperiodic. The non-interrupt driven tasks require access to a shared data store, and we
wish to give the interrrupt-drive task the highest priority:

periodic task t1: C1 = 30 ms, T1 = 100 ms
aperiodic task t2: C2 = 30 ms, T2 = 150 ms
interrupt driven aperiodic task ta: Ca = 10 ms, Ta = 200 ms
periodic task t3: C3 = 30 ms, T3 = 300 ms

The context switch time is included in the indicated CPU times. Use the Generalized
Utilization Bound Theorem to determine if this task set is schedulable.

3. Given two tasks T1 and T2 with two shared data structures protected with binary
semaphores S1 and S2, show how the priority ceiling protocol prevents mutual deadlock
and guarantees that a high-priority task will be blocked by at most one critical section of
any lower priority task.

Solutions:

1. Compute the utilizations for each task:

 Task t1: C1 = 20 ms; T1 = 100 ms → U1 = 0.2
 Task t2: C2 = 40 ms; T2 = 150 ms → U2 = 0.267
 Task t3: C3 = 100 ms; T3 = 350 ms → U3 = 0.286

i.e. Utotal = 0.753 Assume that the context switch overhead is included in the CPU
times. The upper bound from the Utilization Bound Theorem is:
 U(3) = 3(21/3-1) = 0.78
which is greater than the total utilization of these tasks → all three tasks can meet their
deadlines.

Given that t1's performance changes to:
 Task t1: C1 = 40 ms; T1 = 100 ms → U1 = 0.4

Now, Utotal = 0.953 which is greater than the bound → the tasks fail to meet their
deadlines. Also the first two tasks can be checked in the same way, e.g. Utotal = 0.667
and the upper bound becomes:
 U(2) = 2(21/2-1) = 0.828

2

which is greater than the total utilization of these tasks → at least the first two tasks
can meet their deadlines.

The basis for applying the Completion Time Theorem is that provided each task
completes execution before its first period (i.e. meets its first deadline) when all tasks
are started at the same time, then the deadlines will be met for any task start times.

The worst-case scenario is with all three tasks ready to execute at the same time. Using
rate monotonic scheduling t1 executes first, followed by t2 then t3.

Note that task ti will execute once for a CPU time of Ci during a period Ti and higher
priority tasks will execute more often and may pre-empt task ti. Thus it is necessary to
consider the CPU time used by all higher priority tasks.

The ends of the first periods of each of the tasks, Ti, are referred to as scheduling points.

Look at the appropriate scheduling points for task 3, i.e. the ends of the periods of all
higher priority tasks which have times less than or equal to task 3’s period.

The completion time theorem checks that all tasks have completed their execution at any
of the scheduling points (SP). For example, to check if all tasks met their deadlines at
task 3’s SP, i.e. 350 msec, we potentially have 4 executions of task 1, 3 executions of
task 2 and 1 execution of task 3 → 4C1 + 3C2 + C3 ≤ T3 ? (160 + 120 + 100 > 350)

This doesn’t mean the task set can’t meet its deadlines - the theorem requires that all
SP’s be checked, i.e. if all tasks can meet their deadlines for one scheduling point, then
the task set is schedulable. So looking at each scheduling point:

 T1: C1 + C2 + C3 ≤ T1 ? (40 + 40 + 100 > 100)
 T2: 2C1 + C2 + C3 ≤ T2 ? (80 + 40 + 100 > 150)
 2T1: 2C1 + 2C2 + C3 ≤ 2T1 ? (80 + 80 + 100 > 200)
 3T1: 3C1 + 2C2 + C3 ≤ 3T1 ? (120 + 80 + 100 = 300)
 2T2: 3C1 + 2C2 + C3 ≤ 2T2 ? (120 + 80 + 100 = 300)
 T3: 4C1 + 3C2 + C3 ≤ T3 ? (160 + 120 + 100 > 350)

Thus the condition for SP 3T1 is met, i.e. after 300 msec, task 1 will have run 3 times,
task 2 will have run 2 times and task 3 once → the required computation fits in this SP.

time 0 50 100 150 200 250 300 350

task t 1

task t 2

task t 3

40 40

40

60

T 1 T 2 T 3

40

2T 1
2T 2

20 10 10

40

3T 1

3

Note that this indicates that we could not add any higher priority tasks than task 3,
otherwise it would miss its deadline. But tasks of lower priority than task 3 could be
added if they have a sufficiently long period.

Applying the mathematical expression for the Completion Time Theorem where Cj is
the execution time, and Tj is the period, of task tj:

 ∀ ≤ ≤ ∀ ∈












≤
=
∑i i n k p R C pT

T
pTi j

k

jj

i

k, , ,1
1

(,)

where  R k p k i p T Ti i k= ≤ ≤ ={() }, , , , /1 1 m and at least one of the inequalities
must be met for each i.

 As an example, we must check task t3 against t1: i.e. i = 3 and k = 1
 → p = 1, . . . ,  T Ti k/ = 1, . . . ,  350 100/ = 1, 2, 3.
 i.e. Ri = (k,p) = (1,1), (1,2), (1,3)

 e.g for (k, p) = (1,3) ⇒ C T
T

C T
T

C T
T

T1
1

1
2

1

2
3

1

3
1

3 3 3 3() () () ()








 +









 +









 ≤

 ⇒ 





+ 





+ 





≤C C C T1 2 3 1

3 100
100

3 100
150

3 100
350

3() () ()

 3C1 + 2C2 + C3 ≤ 3T1 ⇒ 120 + 80 + 100 = 300

and as at least one inequality is met, so the task set is schedulable (strictly, by the
theorem, we would also have to check task 2 against task 1, and task 1 against itself).

2. First, determine the utilizations:

periodic task t1: C1 = 30 ms, T1 = 100 ms → U1 = 0.3
aperiodic task t2: C2 = 30 ms, T2 = 150 ms → U2 = 0.2
interrupt driven aperiodic task ta: Ca = 10 ms, Ta = 200 ms → Ua = 0.05

 periodic task t3: C3 = 30 ms, T3 = 300 ms → U3 = 0.1

Using rate monotonic priority assignment, the priorities would be t1, t2, ta, t3. Because a
fast response is required to interrupts the priority of ta is raised to be the highest.

The overall CPU utilization is 0.65 which is less than the utilization bound U(4) = 4(21/4-1)
= 0.76. Because of the non-rate monotonic priority assignment it is necessary to consider
each task individually:

A. Consider task ta - highest priority with Ua = 0.05 → no trouble meeting its deadline.

B. Consider task t1 - apply the Generalized Utilization Bound Theorem:

a) Pre-emption by high-priority tasks with periods less than T1 (there are none
here).

b) Execution utilization for task t1 is U1 = 0.3.
c) Pre-emption by high-priority tasks with longer periods. Task ta falls into this

category → utilization in the period of the task is Ca/T1 = 10 ms/100 ms = 0.1.

4

d) Blocking time by lower priority tasks. Both t2 and t3 can potentially block t1 →
assuming the priority ceiling algorithm is being used, at most only one task can
block t1, so take the worst-case of t3 (since it has the longer execution time), i.e.
blocking utilization during the period of the task is B3/T1 = 30 ms/100 ms = 0.3.

For task t1, the worst case utilization = 0.3 + 0.1 + 0.3 = 0.7 which is less than the worst
case utilization bound = 0.76 → task t1 will meet it's deadline.

C. Consider task t2 - apply the Generalized Utilization Bound Theorem:

a) Pre-emption by high-priority tasks with periods less than T2. Task t1 has a period
less than T2, so its pre-emption utilization during the period is U1 = 0.3.

b) Execution utilization U2 = 0.2.
c) Pre-emption by high-priority tasks with longer periods. Task ta falls into this

category → utilization in the period of the task is Ca/T2 = 10 ms/150 ms = 0.07.
d) Blocking time by lower priority tasks. Task t3 can potentially block t2 → again

assuming the priority ceiling algorithm is being used, at most only one task can
block t2, so take the worst-case of t3, i.e. blocking utilization during the period of
the task is B3/T2 = 30 ms/150 ms = 0.2.

For task t2, the worst case utilization = 0.3 + 0.2 + 0.07 + 0.2 = 0.77 which is greater than
the worst case utilization bound = 0.76 → task t2 will just miss its deadline.

D. Consider task t3 - apply the Generalized Utilization Bound Theorem:

e) Pre-emption by high-priority tasks with periods less than T3. Tasks t1, t2 and ta
have periods less than T3, so its pre-emption utilization during the period is
U1 + U2 + Ua = 0.3 +0.2 + 0.05 = 0.55.

f) Execution utilization U3 = 0.1.
g) Pre-emption by high-priority tasks with longer periods. There are no tasks in

this category.
h) Blocking time by lower priority tasks. There are no lower priority tasks.

For task t3, the worst case utilization = 0.55 + 0.1 = 0.65 which is less than the worst
case utilization bound = 0.76 → task t3 will meet its deadline.

 Thus all four tasks will not meet their deadlines (although task 2 is close to meeting its

deadline). As usually the worst case upper bound is taken to be 0.69 to provide a
reasonable safety-margin → requires rescheduling of tasks.

3. Let T1 attempt to lock the semaphores in the order S1 then S2 and T2 attempt to lock in

the reverse order. Also let T1 have higher priority than T2. As both tasks use the
semaphores, the priority ceilings of S1 and S2 must be set to that of task T1 or higher.

Let T2 start by acquiring S2 and when T1 is executed it will pre-empt T2. T1 attempts to
lock S1 but because its priority is not higher than the priority ceiling of already locked
semaphore S2 it is suspended. Task T2 has its priority raised to that of the semaphore it
has acquired (S2) and it now continues execution and acquires S1.

Only one lower priority task can block T1 because when the semaphore that the lower
priority task has (in this case T2) is returned, T1 continues execution with that semaphore
(since it was suspended at that point and is the highest priority task waiting on that
semaphore).

