
RDCS 423 - Real-Time Distributed Computer Systems cs1/p1

COMET BASED ELEVATOR CONTROLLER
SYSTEM CASE STUDY

Brief System Description (Gomaa, 2000):

The system controls the motion of multiple elevators and responds to passenger
requests at various floors:

• Each elevator has a set of destination buttons and a set of floor lamps.
• Each elevator has a hoist motor which responds to direction commands: up,

down and stop, and returns a status.
• Each elevator has a door motor which may be controlled to open or close and

returns a status.
• Each floor (apart from the top and bottom floors) has up and down floor buttons

and corresponding lamps.
• Each floor (apart from the top and bottom floors) has two direction lamps to

indicate which way the elevator is heading.
• The top and bottom floor have a single down and up floor button and

corresponding lamp, respectively.
• Each floor has an elevator arrival sensor.

I/O characteristics:
• All buttons and sensors generate an interrupt, i.e. are asynchronous inputs.
• The elevator and floor lamps are switched on by hardware, but must be switched

off by software.
• The direction lamps are fully software controlled.

To do:

1. Produce the Use Case model for the Elevator Control System.

2. Produce the Elevator Control System Context Diagram.

3. Produce the Statechart Diagram segment for the Stop Elevator at
Floor included use case.

4. Produce the Task Architecture Diagram based on the consolidated
collaboration diagram and subsystem structuring.

RDCS 423 - Real-Time Distributed Computer Systems cs1/p2

Use case model for the Elevator Control System:

Request Elevator Use Case

Actors:

Elevator User, Arrival Sensor
Precondition:

User is at a floor and wants an elevator
Description:

1. User presses an up floor button. The floor button sensor sends the user
request to the system, identifying the floor number.

2. The system selects an elevator to visit this floor. The new request is added to
the list of floors to visit. If the elevator is stationary, the system determines
in which direction the elevator should move in order to service the next
request.

3. As the elevator moves between floors, the arrival sensor detects the elevator
is approaching a floor and notifies the system. The system checks whether
the elevator should stop at this floor. If so, the system stops the motor, and
opens the door.

4. If there are other outstanding requests, the elevator visits these floors on the
way to the floor requested by the user. Eventually, the elevator arrives at the
floor in response to the user request.

Alternatives:
1. User presses a down floor button, the system response is the same as the

main sequence.
2. If the elevator is at a floor, and there is no new floor to move to, the elevator

stays at the same floor, with the door open.
Postcondition:

Elevator has arrived at the floor in response to the user request.

[Gomaa, 2000]

RDCS 423 - Real-Time Distributed Computer Systems cs1/p3

If we also consider either use case, we can factor out included use cases in
both primary use cases, i.e. in both cases the system must dispatch an
elevator to a requested floor and it must stop the elevator at that floor:

Stop Elevator at Floor Included Use Case

Actors:

Arrival Sensor
Precondition:

Elevator is moving
Description:

As the elevator moves between floors, the arrival sensor detects that the
elevator is approaching a floor and notifies the system. The systems checks if
the elevator should stop at this floor. If the system commands the motor to
stop, and the door to open.

Alternatives:
The elevator is not required to stop at this floor and so continues past the

floor.
Postcondition:

Elevator has stopped at the floor with the door open.

[Gomaa, 2000]

RDCS 423 - Real-Time Distributed Computer Systems cs1/p4

Conceptual Static Class Model and System Context Diagram

The conceptual static class model for the Elevator System shows the composite
system classes and their associations:

All external devices are interfaced to the system via software device interface
objects so the System Context Diagram shows this mapping:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-Time Distributed Computer Systems cs1/p5

Dynamic Modelling

The dynamic modelling phase maps the use cases into object collaborations. For
example, consider the Request Elevator use case:

• On a floor button request – must decide which elevator should service the
request.

• Scheduler decides – requires status of all elevators and their current plans

Collaboration Diagram – Request Elevator Use Case:

Collaboration Diagram - Stop Elevator at Floor Use Case:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-Time Distributed Computer Systems cs1/p6

Statechart Diagram – Stop Elevator at Floor Use case:

Collaboration Diagram - Dispatch Elevator to Floor Use Case:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-Time Distributed Computer Systems cs1/p7

Statechart Diagram – Dispatch Elevator Use case:

Complete Statechart Model:

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-Time Distributed Computer Systems cs1/p8

Consolidated Collaboration Diagram

The consolidated collaboration diagram shows all main sequences through the use
cases and all alternatives. Message names are usually aggregated for conciseness,
e.g. Direction Lamp Command.

Subsystem Structuring

[Gomaa, 2000]

[Gomaa, 2000]

RDCS 423 - Real-Time Distributed Computer Systems cs1/p9

Task Structuring

All collaboration diagram objects are analyzed and the task structuring
criteria are applied. In the non-distributed case, the Elevator Status &
Plan entity object is accessible to all elevators. Each set of subsystem
objects are mapped to tasks:

All asynchronous input device interfaces are mapped to asynchronous I/O
tasks. Elevator Manager is designated as a coordinator task, and Elevator
Controller is a multiple instance control task. The Elevator Status & Plan
object is mapped to a passive data abstraction object. As the motor and
door output interfaces are passive, and Elevator Controller must await a
response, no additional I/O tasks are required to interface to these output
objects.

Task Interfaces

Consider message interfaces between tasks, e.g:
• Loose coupling between Elevator Buttons Interface and Elevator

Manager tasks.
• Tight coupling between Elevator Manager and Elevator Controller

tasks.

[Gomaa, 2000]

RDCS 423 - Real-Time Distributed Computer Systems cs1/p10

Data Abstraction Classes

Only one instance is required in the non-distributed case (ElevatorStatus
&Plan) which holds the planned commitment for the elevator. The
required operations on the class are developed:

Alternatives: Consider mappings for multiple CPUs for the elevator
subsystems and floor subsystems – consider the distributed design in the
second part of this case study.

[Gomaa, 2000]

[Gomaa, 2000]

