REAL-TIME DISTRIBUTED SYSTEMS
DETAILED DESIGN METHODOLOGY (2)

Software Architecture Design

The approach taken to decompose the system into subsystems, components,
interfaces and their interconnections is referred to as developing the
software architecture. Specific guidelines are required for concurrent,
real-time and distributed applications.

A number of architectural styles or patterns can be defined for this area:

1. Client/Server - simple service provider/multiple clients, e.g. ATM
banking system:

«external output
device»
ReceiptPrinter Operator

«external user»

«system»
Banking
System

«external input/output
devicen

CardReader \ !
«subsystem» 1.% 1 «subsystemy»

I ATMClient BankServer
Subsystem Subsystem

1

«external output
device»
CashDispenser 1

«external user»
L ATMCustomer

[Gomaa, 2000]

2. Layered Abstraction - simple interfaces at lower levels rising to complex
functionality, e.g. ISO network protocol stack.

3. Communicating Tasks - a network of concurrent tasks with separate
threads of control optionally sharing data.

System Decomposition

The general approach to system decomposition is guided overall by the

principle of information hiding and separation of concerns:

1. Subsystems need to be as independent of each other as possible - low
coupling

2. Linkages between objects in the subsystems should be high - high
cohesion

3. Once subsystems and their interfaces have been defined, detailed

subsystem design can proceed independently.

. Use case object interaction models form the basis of subsystem design

5. Objects appearing in multiple use cases must be allocated to one
subsystem (the one with the strongest coupling to the object).

o

Subsystem Software Architecture

To determine the subsystems requires a transition from analysis to initial
design via integrating parts of the analysis model - all the collaboration
diagrams developed for each use case are combined into a consolidated
collaboration diagram. This phase was referred to in earlier OO
methodologies as "robustness analysis" but COMET emphasises the
dynamic analysis model through the message communication interfaces.

The consolidated collaboration diagram shows all message
communications: both the main and all alternative use-case sequences. If
the diagram becomes too complex then aggregate messages can be
substituted, e.g. Cruise Control Messages (with an associated directory) can
be used for the Cruise Control object.

Given a consolidated collaboration diagram, subsystems can be identified
and from these subsystem collaboration diagrams constructed, e.g. for the
ATM Banking system:

RDCS 423 - Real-time Distributed Computer Systems rm3/pl

RDCS 423 - Real-time Distributed Computer Systems rm3/p2

«subsystem»
: BankServer

ATMTransactions /]\

l, Bank Responses

lient subs Dispenser [ermal
Carg_|cclien subsystom> Coutpit device | | Outpur | X
Reader A et interfacen» —> | 4 F;)
Input - Dispense Cash | ; CashDispenser Py
cexternal 10 | /0 device » (Cash Details) Intcrtacs L
device» interface» Card Inserted, Card Fjected, —— Dispenser
: CardReader | € + CardReader Card Confiscated Cash 1\
Card Interface Withdrawal .
Reader | - Amount \L Cash
Outpur | Card R E-'fw‘ . Cash Response
~onfiscate .
[Bp‘{‘ «state dependent | Dispensed «entity»
ata controby . ATMCash
Customer Events +ATMControl Start Up,
«entity» (Transaction /) Closedown Afﬁhd et
 ATMCard Details) e perator
_— Update AN Information
T i «aser interface» >
Status (Cash Details), Pring . Operator
Card Card Update PIN Status Receipt Interface
Data Request Displa !\ Operator ; Operator
Pay Receipt Input
Prompts Printed
C‘;Sw":e' Customer Information, T _ printer [«external
npu Customer Selection i Data «output device Output output
—> «user interfacen «entity» — interface» —= | devieer
p— + Customerlnterface Pa— LATM P— : ReceiptPrinter : Receipt
Display Transaction Details Transaction | Transaction Interface Printer
=== Information Request —
Customer

[Gomaa, 2000]

A higher level system collaboration diagram can then be constructed which
hides the subsystems objects and interactions and only shows subsystems
and subsystem interactions, e.g:

{ATM
Customer

Card Reader Input \L

«external 1/0 device»
: CardReader

TCard Reader Output

«system»

: BankingSystem

Customer [nput

ATM Transactions

—
@

Display Information

«client > «server
subsystem» < subsystem»
: ATMClient : BankServer

Bank Responses

Operator Input //

Operator Information

A

: Operator

Dispenser Output

\L Printer Output

«external output device»
: ReceiptPrinter

«external output device»
: CashDispenser

[Gomaa, 2000]

Subsystem Design Guidelines

The principles of information and separation of concerns also underpin
subsystem design guidelines:

. Aggregate/Composite objects should be in the same subsystem

. Geographically separated objects should be in different subsystems

. Clients and Servers should be in different subsystems

. User interfaces are usually separate subsystems

. External objects should interface to only one subsystem

. A control object and its entity and interface objects it controls should be
in the same subsystem.

7. Entity objects should be in the same subsystem as objects that update it.

o Uk WN R

Common Subsystem Types

1. Control - receives inputs, generates outputs and is usually state-
dependent, e.g:

«system»
CruiseControl
&Monitoring

System

] []

RDCS 423 - Real-time Distributed Computer Systems

rm3/p3

«subsystem» «subsystem»
CruiseControl PP —— Monitoring
Subsystem Subsystem

[Gomaa, 2000]

2. Coordinator - usually where there are multiple control subsystems a

coordinator is required, e.g:

RDCS 423 - Real-time Distributed Computer Systems

rm3/p4

«external input
device»
+ ElevatorButton

«external output
device»
: ElevatorLamp

«external input
devicen
 ArrivalSensor

Elevator

Button Request

Elevator

Arrival
\ T Lamp / Sensor Input
Output

Motor
Command

«external output
device»
 Moter

<« System

«system»
+ ElevatorCot

ntrol

«control

—
Motor

Floor

Response Floor Lamp
Command 7/ rival (Floor #) N
Departed (Floor #) NN\

Direction Lamp
Command

subsystem»

+ ElevatorSubsystem

Scheduler
Request

Elevator Commitment

Button

«externat input
devicen
: FloorButton

Request

«data collcction

«coordinator

—>

: FloorSubsystem

— .
Service Request

Scheduler

74

Floor Lamp

Direction Lamp
Output

«external output
device»
: FloorLamp

Output

«external output
device»

[Gomaa, 2000]

Door
Command
—> wexternal output
—

Door
Response

devicen
+ Door

3. Data Collection - a subsystem that collects raw data from the
environment and preprocesses it for use by other subsystems, e.g:

Raw
Sensor

Processed

Sensor

Sensor
Reports

Data

«data collection
b

Data
—>

«data analysis
I

Sensor
Display
Data

—>

: SensorDataCollection

: SensorDataAnalysis

Processed
Sensor Data

«server
subsystemy
: SensorDataServer

o~

Sensor Data
Request

«user interface
subsystem»
: Operatorinterface

Operator
Request

<«
—

/
/Sensor Data

" Displayed

Information

[Gomaa, 2000]

. Data analysis - analyzes data, provides reports
. Server - provides a service to other subsystems

6. User Interface - provides a display of system information and gathers

user input

7. System services - not application specific, but generic to the platform or

operating system

RDCS 423 - Real-time Distributed Computer Systems

Example: Bank ATM system

A typical three-tier client/server application:

«subsystermn» «subsystem»

ATMClient BankServer

«subsystem»

DatabaseServer

[Gomaa, 2000]
Subsystem Decomposition - static modelling re-examination

The conceptual static model (with class diagrams obtained from
requirements analysis) developed earlier in the methodology can be
revisited with the consolidated collaboration diagram to review
instantiations of objects from classes and relationships between classes.
Association navigabilities can also be assigned or reviewed.

Distributed Architecture Design

In COMET, the approach is to provide a concurrent message-based design
that is highly configurable — the architecture is highly portable across
different system configurations and platforms.

A component-based development approach assists this aim by designing
each subsystem as a component (i.e. an active object with a well-defined
interface). It should be designed to be self-contained and be reusable.

Designing Distributed Subsystems

1. Decompose into subsystems that can potentially execute on separate
nodes (use subsystem structuring criteria - define components and
interfaces)

2. Decompose subsystems into concurrent tasks and information hiding
objects

3. Map instances of the design onto a distributed hardware configuration

rm3/p5

RDCS 423 - Real-time Distributed Computer Systems rm3/p6

To design distributed subsystems, the consolidated collaboration diagrams
showing all systems objects and their interactions is the most useful for
decomposition. Objects are most generally geographically grouped into
composite subsystems, or logically/functionally grouped into aggregate
subsystems (which may span geographical locations), e.g:

—
«server «aggregate
subsystem» subsystemy
< Alarm Process
alarm HandlingServer Planning alarm
(alarmData) (alarmData)
alarm nextOperationRequest
(dlu\m[)um)/l ﬂin request, out operationlnfo)
«aggregate subsystem»
: PartProcessing part part part
startPart Coming [————————————1 Coming Complete
«aggregate | (partinfo) «eontrol subsystem» | (partinfo) «control subsysterm» (partinfo) | «control subsystemn | - | (partinfo)
— + Receiving - : Line — : Shipping —
Production Workstation -~ Workstation ~ Workstation
Management Controller part Controller part Controller
Request Request
tInfe
(partinfo) l, workstation \ (Partinfo)
Status (status)
aserver
subsystemy : :
pick&Place | pick&Place - Worksiation pick&Place | pick&Place
Robot Robot SatsS, Robor Robot
StatusServer . R
Command Status Command Status
. pick&Place workstation assembly
pick&Place Robot ;Yorlzsij\!lon Request oy \ RO
Robot / Status f’“;“}‘;"" (inrequest, out Robot
Command (»mi) sation | Avorkstation Copaand
I atz) \l Data) T
«external systemm» — «external system»
«external system» : Pick&Place «user + Assembly «external system»
+ Pick&Place Robot interfacen Robot +Pick&Place
Robot +Operator Robot
Interface

[Gomaa, 2000]

Although the subsystem structuring criteria as defined earlier are used to
guide decomposition, additional criteria are also needed to specifically
guide decomposition into distributed subsystems:

1. Proximity to the physical data source - fast access to local data
2. Localized autonomy - receiving general direction, but provides lower
level control and monitoring
. Performance - time-critical functions are confined to single nodes
4. Specialized hardware - interface has to be local, or provides dedicated
processing capability
5. User Interface & Servers (as mentioned in previous criteria)

w

Designing Subsystem Interfaces

Essentially, two types can be used:

1. Loosely-coupled (asynchronous) messages - via FIFO queues or priority
message queues.

2. Tightly coupled (synchronous) messages - common in client/server
architectures (e.g. RPC or RMI)

Which are seen in various distributed communication patterns:
1. Subscription/Notification and Group messaging communications - one-
to-many (broadcast or multicast), e.g:

«user interfacen
firstOperatorInterface
S1: subscribe

P

/NZz: alarmNotification

82: subscribe

AL « SEI;I’SD‘;I_ - «user interface»
+ AlarmHandling secondOperatorInterf:
ace
Server

N2b: alarmNotification

$3: subscribe
N1: alarm

N2c: alarm
Notification

«data collection» «user interfacey

thirdOperatorinterface [Gomaa, 2000]

2. Object Broker communications - client/server intermediary providing
location transparency, e.g:

; Broker

1: client 2: forwarded
Request / \ Request
4: forwarded 3: server
Reply Reply

: Client : Server

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/p7

RDCS 423 - Real-time Distributed Computer Systems rm3/p8

3. Negotiated communications - common in multi-agent systems (client
agents act on behalf of a user to negotiate with servers), e.g:

UA
Server
2a: ﬂigthuery/ —
1: propose (tripToLondon,
depart 14 Sept.,) 2a.1: response
return 18 Sept., < $700) 5 lese”c/
6: confirm
4: request (UA $750) 2b: query
aClient — worldWide — BA
Agent -~ <~ TravelAgent -~ Server
2b.1:
3: offer (UA $750, BA $775) respanse
7: accept
\\\ 2¢: query
2c¢.1:
response
VA
Server [Gomaa, 2000]

4. Transaction based communications - usually indivisible operations on a
server (i.e. all operations are performed or none), e.g: two-phase commit
protocol:

[Gomaa, 2000]
2 Commit : Commit
Server Server
La: prepareTo 1b.3: readyTo 2a commit 2b.3: commit
Commit //1 \\ Commit / \\Complclcd
1a3ireadyTo 1p: proparcTo 2a.3: commit 2b: commit
Commit Commit Completed
firstBank secondBank (irstBank secondBank
Server Server Server Server

1a.1: lack 1h.1: lock 2a.1: contirmDebit 2b.1: confirmCredit
1a.2: debit 1b.2: credit 2a.2; unlock 2b.2: unlock

fromAccount | toAccount l frumAccoun[J toAccount

Note where there may be some delay between the phases, it is usual to
prefix the protocol with a query only transaction followed by a reservation
transaction (with the two-phase commit).

RDCS 423 - Real-time Distributed Computer Systems rm3/p9

Server Subsystem Design & Data Distribution

The purpose of servers is usually to encapsulate some data abstraction
object(s) and provide a means of access to clients. The server can be either
be sequential or concurrent:

1. Sequential Server: simple client request response after invoking the
appropriate operations on the data abstractions, e.g:

clientTransaction
«client subsystem»

; BankClient <—
bankResponse

«sequential server subsystemy»
: BankServer : BankTransactionServer

debit(), debit(),
credit(), credit(), l
read() read()
: Checking Savings
Account Account
[Gomaa, 2000]

2. Concurrent Server: where server demand is likely to be high, access must
be made concurrent with appropriate synchronisation between reader and
writer object via a coordinator, e.g:

«concurrent server subsystem»

aConcurrentServer
clientRequest
_— Server

Coordinator

read . \
Request &2 R‘"“‘E h write
read equest ™\ Request™a

done
ﬁ:e Request /1 \ A
done done
| aReader | |anotherRezder I | aWriter | Iancthchm:r I
service service
Response Response
service P “J \ witeO) l, service
Response read) fead() Response
write()
: Data
Repository
[Gomaa, 2000]

Note that the service response is asynchronous and usually implemented as
a callback from the server to the client when the service request has been
met.

RDCS 423 - Real-time Distributed Computer Systems rm3/p10

Both sequential and concurrent server subsystems encapsulate centralized
data abstractions, but higher performance systems usually require some

form of data distribution as well.

In a distributed server, data collected locally is held locally and served
locally. For performance reasons, this data may need to be replicated in
more than one server. Data must then be updated at regular intervals to

ensure it is sufficiently up-to-date.

System Configuration

The final step in the COMET methodology is to map an instance of the

distributed application to a physical architecture (the target system):

1. Define component instances - components may have multiple instances
in the application and require unique IDs

2. Interconnect component instances - the architecture defines component
communications but component IDs may need to be exchanged.

3. Map component instances (logical nodes) to physical nodes.

Example: Distributed Elevator Control System

On the deployment diagram, each component instance is allocated to a

node:

: ElevatorSubsystem
{1 node per elevator}

«local area network»

: FloorSubsystem
{1 node per floor}

: Scheduler
{1 node}

[Gomaa, 2000]

RDCS 423 - Real-time Distributed Computer Systems rm3/pll

Testing Issues in Real-Time (and Distributed) Systems

Real-Time distributed software is critically dependent on the timing and
sequencing of inputs, and as these typically come from the physical world
there are many possible values and combinations of inputs possible — a
very large number of test cases.

Real-Time distributed software (particularly when some parts are
embedded) is also usually more complex than conventional software due to
the requirement to operate without human intervention — must incorporate
a larger number of exception handling routines to support recovery from
unexpected events — complexity also results in a large humber of test
cases.

The operation of real-time distributed software across various processing
nodes concurrently — interactions between the processors may be highly
non-deterministic — also produces a very large number of test cases from
all the possible inter-leaving and sequencing of messages between
processors.

Additional variations in the performance of the underlying communications
network also impacts the timing and sequencing of messages between
processors.

Apart from analysis based testing methods, either from performance
analysis of the design, or formal correctness proofs, systematic testing of a
manageable set of statistically selected test cases is usually required so that
probabilistic measures of software failure can be inferred from limited
testing.

The most widespread testing technique is to construct a physical
environment simulator to generate as many realistic possible variations of
typical inputs as possible to test the real-time distributed system. The
simulator may also be able to produce conditions which are not easily
created in the physical world but represent scenarios that the system must be
able to handle.

RDCS 423 - Real-time Distributed Computer Systems rm3/pl2

In terms of management of the testing process, the breakdown into phases
of unit testing and integration testing is still applicable, e.g. from the
Unified Process:

e - T
Inception : Elaboration ‘ Construction 1 Transition
I 1]
| 1
Requirements | 1
A |
i . T —
i |
Analysis : |
" T
T T
I L I
Design ! !
B /J S *——\Lx
i i
i - 1
. 1 “h\
Implementation : // Integr ~
Test
Preliminary | Iter. Iter. | lter. Iter. Iter. Iter.
iterations #1 #n |#n+1 #m | #m+1 #k

[Rational, 2000]
Unit testing is largely able to following conventional software engineering
approaches (i.e. driven by generating test cases from use case requirements
scenarios since units are self-contained and shouldn’t require operation
across distributed nodes or exhibit complex temporal interactions with the
physical world (otherwise unit decomposition has not been very good!).

Integration testing requires that tests include:

- Temporal variations between software units executing concurrently
on single processor nodes (which involves the scheduler and inter-
task communications).

- Temporal variations between message delays for software units
messaging each other on different distributed nodes.

Integration testing is largely design architecture driven through selection
and perturbation of critical event sequences since testing must also confirm
that all units conform to the architectural design assumptions. Integration
testing must also cover robustness of the system as the integration load is
increased on the hardware architecture.

System testing largely tests against the requirements and takes a more
external view that overall performance requirements are met.

RDCS 423 - Real-time Distributed Computer Systems rm3/p13

