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REAL-TIME DISTRIBUTED SYSTEMS 
DESIGN METHODOLOGIES 
 
SOFTWARE LIFE-CYCLE ISSUES FOR REAL-TIME 
SYSTEMS 
 
Common software development models: 
 
 

•  Waterfall model - has some limitations but most-widely used 
 

•  Throwaway prototyping model 
 

•  Incremental development model (evolutionary prototyping) 
 

•  Spiral model 
 
 

Waterfall model major stages (variations for RT systems): 
 
 

•  Software Requirements Specification (SRS)  - specify the systems 
external behaviour. Since RT systems are usually a component of 
a much larger system → a System Requirements Specification 
usually proceeds the SRS. 

 

•  Software Architectural Design - for RT systems the separation of 
functionality into concurrent tasks is a major activity in this phase. 
This is in addition to the usual separation into function software 
modules. Behavioural and dynamic aspects of system 
performance are also considered in this phase. 

 

•  Detailed Design - algorithmic details of each system component is 
defined using a PDL (structured English or pseudo-code). For RT 
systems attention is paid to algorithms for resource sharing, 
deadlock avoidance, and interfacing to I/O devices. 

 

•  Coding - usually a concurrent programming language is selected 
(e.g. Ada, Modula2 or Occam) or a sequential language with a 
suitable multi-tasking operating system. 
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•  Testing - Although the basic testing approach is similar to 
conventional systems testing, the non-deterministic nature of 
RT systems introduces another level of complexity, as does 
their application in embedded systems → may require 
environment simulators to be constructed. 

 

Testing can be subdivided into:    
•  unit testing 
•  integration testing 
•  system testing 
•  acceptance testing 

  

The lower and upper levels of the testing program have much in 
common with conventional software system, but integration 
testing must specifically test the concurrent task interfaces. 

 
 
Limitations of the Waterfall model: 
 
•  Software Requirements are not really tested until a working 

system is available → errors in the SRS may be the last to be 
found → very costly to correct. 

 

•  Due to the late availability of a working system, a design or 
performance problem may go undetected until late in the testing 
phase → also costly to correct. 

 
Where the SRS may contain components with identified significant 
risk factors, alternative models are preferred: 
 

•  The Throwaway Prototype model helps to resolve the first 
problem above - i.e. specifically designed to clarify user 
requirements (performed to a preliminary SRS). 

 

•  The Evolutionary Prototype model helps to resolve the second 
problem above - i.e. by creating subsets of the system that 
progress from prototype to working system. Allows performance 
measurements to be done early on critical components. 
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•  The Spiral model provided a way of effectively combining 
throwaway prototypes, evolutionary prototypes and the Waterfall 
model by specifying an iterative approach made up of several 
cycles of the Waterfall model stages. 

 
 
SOFTWARE DESIGN CONCEPTS FOR REAL-TIME 
SYSTEMS 
 
Co-operation between concurrent tasks - primary problems encountered: 
 

1. Mutual Exclusion - tasks require access to shared resources or 
devices (e.g. multiple readers/writers OS problem with the 
classical solution using binary semaphores). 

 

2. Task synchronization - task co-ordination without the exchange of 
data (the solution is to use binary semaphores or event counters). 

 

3. Producer/Consumer - tasks need to communicate and exchange 
data (the solution is to use intertask messaging which may be 
loosely or tightly-coupled). 

 
 

Environments for Concurrent Processing 
 
There are three main environments: 
 

1. Multiprogramming - multiple tasks sharing one processor  → 
virtual concurrency, i.e. the OS controls allocation of the 
processors to tasks. 

 

2. Multiprocessing - multiple processors with shared memory  → 
real concurrency with usually one virtual address space in which 
tasks execute and communicate. 

 

3. Distributed processing - multiple nodes interconnected via a 
communications network  →  real concurrency with local address 
spaces with message passing. 
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SOFTWARE DESIGN METHODS FOR REAL-TIME 
SYSTEMS 
 
Evolution of Software Design Methods: 
 
•  1960's:  minimal systematic analysis and design, some use of 

flowcharts, subroutines used for decomposition. 
 

•  1970's:  the growth of structured methods - top-down design, 
stepwise refinement. Two main approached developed - data flow 
orientated design (Structured Design - Demarco, 1978 and Gane, 
1979 → lead on to Structured Analysis ) and data structure design 
(Jackson Structured Programming - Jackson, 1975 and the 
Warnier/Orr method - Orr, 1977). 

 

•  late 1970's: for concurrent system design - introduction of the 
MASCOT notation - Simpson, 1979 - extension of the data flow 
approach that formalized intertask communication via channels and 
the specification of pools (encapsulated shared data structures). Data 
is accessed indirectly in the pools by calling access procedures that 
synchronize access.  

 

•  1980's: Jackson System Development (JSD) - Jackson, 1983; 
Design Approach for Real-Time Systems (DARTS) - Gomaa, 1984; 
the Naval Research Labs software cost reduction method (NRL) - 
Parnas, 1984; Real-Time Structured Analysis and Structured Design 
(RTSAD) - Ward & Mellor, 1985 and Hatley & Pirbhai, 1988. 

 

•  late 1980's-1990's: emergence of object-orientated analysis and 
design (OOAD) methods - Booch, 1986 & 1991; Wirfs-Brock, 
1990, Rumbaugh etal, 1991, Coad & Yourdon, 1992; Selic, 
Gullekson & Ward, 1995 (ROOM); Booch, Rumbaugh & Jacobson 
(UML), 1997; Douglass, 1998 (Real-Time UML). 

 
•  2000's: convergence towards UML based approaches, e.g. Rational 

Unified Process, Booch et al, 1999; COMET (Concurrent Object 
Modelling and archectectural design mEThod Gomaa, 2000) 
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Requirements Specification versus Design Specification 
 
Two views of  a requirements specification are: 
 

•  the SRS should only address the external behavior of the system, i.e. 
the system is viewed as a "black box", e.g. the NRL method. 

 

•  the SRS should also be potentially executable → a prototype can 
then be developed from the specification → must include internal 
structure to support those requirements, e.g. the JSD method. 

 
Most analysis methods, e.g. RTSA and OOA follow a problem-
orientated approach, i.e. determine the problem domain components 
and the interfaces between them: 
 

•  RTSA methods map problem domain functions to functional 
modules in the design. 

 

•  OOA methods map problem domain objects to solution domain 
objects in the design. 

 
In both RTSA and OOA, decisions made in the analysis stage often 
strongly influence the design, i.e. the problem orientated approach 
results in the scope of components being determined during analysis 
and their interfaces. 
 
 

Criteria for Selecting Software Design Methods 
 
1. The method must be in the published literature and not be 

proprietary. 
 

2. The method must have been used on a real application. 
 

3. The method must not be orientated to a specific language. 
 

4. The method must be more than design notation, i.e. it must 
identify systematic steps to perform the design.  
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Real-Time Structured Analysis and Design (RTSAD) 
 
Two main variations of RTSA have been developed:  Ward & Mellor, 
1985 and Hatley & Pirbhai, 1988. An Extended System Modelling 
Language (ESML) approach was an attempt (Bruyn etal, 1988) to 
merge the two approaches. 
 
The primary addition over the conventional SADT approach is: 
•  state transition diagrams (STDs) 
•  control flows 
•  integration of STDs and DFDs via control transformations (in the 

Ward & Mellor approach) and control specifications (in the Hatley 
& Pirbhai approach). 

 
The first phase of RTSA requires the development of : 
•  the essential model (Ward & Mellor) 
•  the requirements model (Hatley & Pirbhai) 
 
This model has three views (the first two of which are most important 
for RT systems): 
•  the functional view 
•  the behavioural view 
•  the informational view (not supported in Hatley & Pirbhai) 
 
 
Basic Terminology 
 
•  Functions:  basic elements the system is decomposed into (also 

called transformations or processes) which can be of the data or 
control type. The interaction between functions is in the form of 
data and control flows. 

 

•  Modules:  during design the functions are mapped to modules. 
 

•  Finite state machines:  in the form of state-transition diagrams 
(STDs) define the behavioural characteristics of the system. A 
control transformation is represented via a STD, decision tables or 
process activation tables. 
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•  Entity-Relationship (E-R) models:  used to identify the data stores 
and the relationships between them. While useful in data intensive 
applications they are not used in the Hatley & Pirbhai approach. 

  

•  Module cohesion:  used in module decomposition to identify the 
strength or unity of a module. 

 

•  Module coupling: used in module decomposition to identify the 
degree of connectivity between modules. 

 
 

Notation (Ward/Mellor) 
 
Data flow and control flow diagrams are the primary notation used in 
RTSA - they extend data flow diagrams to include event flows and 
control transformations. 
 
Transformations: 
 

 
 
 

Flows:     
 
 
 

Data Store : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data 
Transformation 

Control 
Transformation 

Discrete Data 
Continuous Data 
Trigger/Enable/Disable Events 

Data Store 
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Method (RTSA) 
 
The method is iterative and not necessarily sequential: 
 

1. Create the system context diagram - defines the boundary between 
the external environment and the system to be developed. The 
system is defined as a single data transformation with flows 
between sources and sinks of information at terminators on the 
diagram. 

 

2. Perform data flow/control flow decomposition - the system 
transformation is structured into functions (or processes or 
transformations) with interfaces between them defined in terms of 
data or control flows: 
a) Hatley/Pirbhai:  the emphasis is on hierarchical 

decomposition of function and data  →  multiple levels of 
data flow diagrams and data stores are specified with 
contents defined in a data dictionary. 

b) Ward/Mellor: the approach starts with an event list (set of 
system inputs) and specifies the system response to each 
event. The initial data/control flow diagram is non-
hierarchical but subsequently is structured to decompose 
into lower-level diagrams if required. 

 

3. Develop Control Transformations (Ward/Mellor) or Control 
Specifications (Hatley/Pirbhai): 
a)  Ward/Mellor:  input events trigger STD transitions through 

control transformations and output events are used to control 
execution of the data transformations. Control 
transformations may not be decomposed further. 

b) Hatley/Pirbhai:  a control specification is defined by a STD, 
transition table or process activation table (which shows 
which processes are to be executed). Control specifications 
can be decomposed further. 

 

4. Define mini-specifications (process specifications):  usually 
defined in Structured English. 

 

5. Develop data dictionary:  define all data/event flows and data 
stores.  
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Method (RTSD) 
 
In the design phase the Ward/Mellor and Hatley/Pirbhai approaches 
diverge; Hatley Pirbhai uses system architecture diagrams whereas 
Ward/Mellor continues with: 
 
6. Allocate transformations to processors of the target system:  

possibly redraw the DFDs for each processor. 
 

7. Allocate transformations to tasks:  the transformations on each 
processor are allocated to concurrent tasks. 

  

8. Structured Design:  the transformations allocated to a task are 
structured into modules. The criteria for allocation is module 
coupling and cohesion coupled with the design strategies of 
Transform and Transaction Analysis. 

 

a) Module cohesion criteria:   functional cohesion and 
informational cohesion are the strongest criteria. 

 

b) Module coupling:  data coupling is the most desirable form 
of coupling (parameter passing between modules) whereas 
common coupling (shared global data) is the least 
desirable. 

 

c) Transform Analysis:  a strategy to map a DFD to a 
structure chart diagram (SCD) using input/output flow  →  
the input and output branches on the DFD are mapped to 
separate branches on the SC. 

 

d) Transaction Analysis: a strategy to map a DFD to a SCD by 
identifying the different transaction types  →  each 
transaction type on the DFD has a branch on the SCD with 
one controlling transaction center module. 
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Deliverables (RTSAD) 
 
Analysis: 
1. System Context Diagram 
2. Hierarchical DFDs 
3. Data dictionary 
4. Mini-specifications of processes or transformations 
5. STDs for each control transformation or specification 
 
Design:   
6. SCDs showing program decomposition into modules - a module is 

externally defined by input, output parameters and its function 
and internally defined by pseudocode.  

 
 

Example:  Automotive Cruise Control and Monitoring System 
 
Structured Analysis: 
 
1. Develop the System Context Diagram: 
 
 

         
 
                                  

[Gomaa, 1993] 
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2. Decompose the System Context Diagram into major functions: 
 

                    
 
3. Perform Automotive Cruise Control DFD: 
 

                 
 
•  Three transformations monitor sensors and generate appropriate 

events. 
•  A transformation computes the current speed and cumulative 

distance based on time and drive shaft input. 

•  A transformation computes the required throttle setting based on the 
current speed and cruise control setting 

•  A transformation converts the requested throttle value to the 
physical setting. 

 
 

[Gomaa, 1993] 

[Gomaa, 1993] 
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4. Control Speed DFD/CFD: 
 

       
 

•  The data transformation are triggered, enabled/disabled at state 
transitions: 

E1 - Enable "Increase Speed"       D2 - Disable "Increase Speed" 
E4 - Enable "Maintain Speed"     D5 - Disable "Maintain Speed" 
E6 - Enable "Resume Cruising"   D7 - Disable "Resume Cruising" 
T3 - Trigger "Select Desired Speed" 
T8 - Trigger "Clear Desired Speed" 
 
5. Cruise Control STD: 
 

        

[Gomaa, 1993] 

[Gomaa, 1993] 
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•  The Control Speed DFD/CFD executes the Cruise Control STD.  
State transitions are labelled with input events/output events and 
the output event executes the corresponding data transformation 
on the Control Speed DFD/CFD. 

 
6. Measure Distance and Speed DFD/CFD: 
 

        
 
•  Determine distance is periodically activated to compute the 

Incremental Distance travelled based on the current Shaft 
Rotation Count, Last Distance (last value of Shaft Rotation 
Count) and the Calibration Constant (the Shaft Rotation Count 
per km). 

 

•  The Incremental Distance is then added to the Cumulative 
Distance. 

 

•  Determine Speed receives the Incremental Distance and computes 
the Current Speed given the Incremental Time. 

 
 
Structured Design: 
 
Structured design provides no guidelines for decomposition into 
concurrent tasks  →  structure as one program initially. 
 

[Gomaa, 1993] 
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1. Perform Automobile Cruise Control: 
 

      

             
 
•  The four modules correspond to the four functions to be 

performed: 
 

•  The Get Cruise Control Input is decomposed further into 
Read Control Lever Input, Read Engine Status and Read 
Brake Status.   

 

•  Note that polled I/O is assumed, i.e. the inputs are polled on 
a cyclic periodic basis. For asynchronous I/O, i.e. interrupt 
driven, asynchronous I/O tasks should be assigned (but 
structured design provides no guidelines for this). 

 

[Gomaa, 1993] 
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•  Given a new cruise control input, the Control Speed module is 

called which then calls the Cruise Control module.  This module 
encapsulates the Cruise Control transition table (with input events 
being used as the index into the table) and the output of the table 
comprises the Cruise Control Actions which is used by Control 
Speed to call the appropriate module. 

  

•  Although it would be possible to have common coupling for the 
Current Speed and Desired Speed data items, the Structured 
Design approach advises that Information Hiding Modules 
(IHMs) are be used to encapsulate these data stores  →  these also 
provide the operations used to access the data.  For example, 
Maintain Speed calls Get Current Speed and Get Desired Speed, 
and based on the difference, sends the adjustment Throttle Value 
to the Output to Throttle module. 

[Gomaa, 1993] 
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Timing Issues 
 
•  As the entire system is treated as a single sequential program, the 

timing aspects must be considered carefully.  For example, 
assume that the control functions should be performed with an 
update rate of 100 msec and the monitoring functions should  be 
performed with an update rate of 1 sec. 

 

•  A timer event can be used to awaken the Perform Automobile 
Cruise Control module every 100 msec and the Perform 
Automobile Monitoring is called every 10 activations of the timer 
event. 

 

•  The Perform Automobile Cruise Control loop calls Get Cruise 
Control Input, Determine Distance and Speed, Control Speed and 
Perform Calibration.  In Control Speed the Select Desired Speed, 
Clear Desired Speed and Deactivate Speed modules are all run in 
response to events only. 

 

•  When the vehicle is in the following states: 
a) Cruising state - Maintain Speed is called periodically  

 b) Accelerating state - Increase Speed is called periodically 
 c) Resuming state - Resume Cruising Speed is called periodically. 
   

•  The Get Cruise Control Input module and Output to Throttle must 
be concurrent or interleaved in a sequential program. 

 
 
 

Assessment of Method 
 

•  It was the major RTSAD method with many successful applications. 
 

•  Wide range of CASE tools to support the method. 
 

•  Minimal guidance on system decomposition. 
 

•  Structured Design does not specifically address task structuring. 
 

•  Application of Information Hiding methods is minimal - better in NRL 
method and OOD method. 
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Design Approach for Real-Time Systems (DARTS) 
 
This approach (due to Gomaa, 1984-1987) emphasizes the decomposition 
of the real-time system into concurrent tasks and defining the interfaces 
between the tasks  →  it provides task structuring criteria and guidelines 
for defining the task interfaces. 
 
Basic Concepts: 
 

•  Task structuring criteria:  a set of heuristics derived from 
experience - the criteria are applied to the transformations 
(functions) on the DFD/CFDs developed using RTSA based on 
the temporal sequence in which the functions are executed. 

 

•  Task interfaces:  provided in the form of message communication, 
event synchronization or information hiding modules (IHMs). 

 

•  Information hiding:  used for encapsulating data stores and state 
transition tables. 

 

•  Finite state machine:  defined in the form of STDs 
 

•  Evolutionary prototyping and incremental development:  assisted 
by the identification of system subsets using event sequence 
diagrams, i.e. the sequence of tasks and modules to process an 
external event is identified so that they may be incrementally 
developed. 

 
 

Notation: 
 
•  DFD/CFDs and STDs from RTSA are extended to include event 

flows. SCDs from RTSD are also used to show task 
decomposition into modules. 

 

•  Task architecture diagrams (TADs) are used in DARTS to show 
the decomposition of the system into concurrent tasks and their 
interfaces. 
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Method (DARTS) 
 
1. Develop system specification using RTSA. 
 

2. Structure the system into concurrent tasks:  these criteria are 
applied to the lowest level of the hierarchical set of DFD/CFDs.  
A preliminary TAD is drawn using the task structuring criteria: 

•  I/O data transformations that interface to external devices 
are mapped to asynchronous I/O tasks, periodic I/O tasks, or 
resource monitor tasks. 

 

3. Define task interfaces:   
•  Data flows between tasks are mapped to either loosely-

coupled or tightly-coupled message interfaces. 
•  Event flows are mapped to event signals. 
•  Data stores form the basis of IHMs. 
•  A timing analysis can be performed using event sequence 

diagrams. 
 

4. Design each task: 
•  Each task represents a sequential program which is 

structured into modules using structured design - either 
transform analysis or transaction analysis can be used for 
this purpose.  

 

[Gomaa, 1993] 
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•  The function of each module is defined and then the 
internals of each module are designed. 

 
Deliverables (DARTS) 
 
1. RTSA specification 
 

2. Task structure specification - defines the concurrent tasks in the 
system (function and interfaces). 

 

3. Task decomposition - structure of tasks into modules (function, 
interfaces and detailed design in PDL). 

 
Example:  Automotive Cruise Control and Monitoring System 
 
The RTSA specification follows from the analysis phase of the RTSAD 
method. 
 
 

Task Structuring: 
 

        
 

1. As shown above the Cruise Control subsystem can be represented as 
TADs .  The Cruise Control subsystem is decomposed into 
asynchronous device input tasks of Monitor Cruise Control Input 
and Monitor Shaft Rotation.  Each task is activated by an external 
interrupt. 

[Gomaa, 1993] 

RDCS 423  -  Real-Time Distributed Computer Systems rm1/p20 

2. Monitor Auto Sensors and Perform Calibration are both periodic 
input tasks - temporally cohesive (since both are linked to the 
same timer event). 

 

3. Cruise Control is a high priority control task  →  executes the 
STD 

 

4. Auto Speed Control is a task that is sequentially and functionally 
cohesive (since all its functions are related to speed control and 
the are all constrained to execute sequentially). 

 

5. Throttle is a periodic output task. 
 

6. Determine Distance and Speed is a periodic sequentially cohesive 
task which computes the Cumulative Distance and Current Speed 
at regular intervals. 

 
 
 

Task Interfaces: 
 
All tasks communicate via messages or IHMs: 
 

1. Data stores that are accessed by more than one task are mapped to 
IHMs.  Access control is achieved via semaphores. 

 

2. The interface to the Cruise Control task is via a loosely- coupled 
FIFO queue  →  ensures that I/O tasks are not held up by Cruise 
Control, and if input events arrive in quick succession none are 
lost. 

 

3. The interface between Cruise Control and Auto Speed Control is 
tightly coupled with no reply. 

 
 

Structured Design: 
 
Given the task interface design, the next step is to design each task 
(which represents a sequential program)  →  can use the Structured 
Design method to decompose into modules. 
 
The Cruise Control Task has a main procedure that is (by convention) 
given the same name as the task. 
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1. Cruise Control calls Receive Cruise Control Message to wait for 

an input message (i.e. the task is suspended on this input). 
 

2. Cruise Control calls the STM module passing it the appropriate 
event and returning the appropriate action from the transition 
table. 

 

3. Where the action is Select Desired Speed or Clear Desired Speed, 
the appropriate procedure is called.  

 

4. Other actions are sent as speed commands to Auto Speed Control. 
 

5. There are two IHMs, Current Speed and Desired Speed - Update 
and Get ensure synchronized access to the data items. 

                                                                          

 
[Gomaa, 1993] 

[Gomaa, 1993] 
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1. Auto Speed Control is suspended on Receive Speed Command 
waiting for a message. 

 

2. Transaction Analysis can be applied to this task by identifying the 
command received as a transaction, Auto Speed Control is the 
transaction processor which calls the appropriate transaction 
handling procedures. 

 

 
Assessment of Method 
 
•  Emphasize decomposition of system into concurrent tasks and 

provides criteria for identifying tasks. 
 

•  Gives guidelines for interfaces between tasks. 
 

•  Emphasizes use of STDs and provides a transition from RTSA to 
a real-time design by providing the decomposition principles. 

 

•  Although IHMs are used, they are not as extensively employed as 
in OOD methods. 

 

•  A potential problem with DARTS is that it is dependent on a well 
performed RTSA phase but the RTSA approach is weak on 
system decomposition guidelines. To minimize the impact of this 
limitation, the DARTS approach specifies that attention should be 
directed to control flow (i.e. STDs) before data flow. 
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Object-Orientated Design for Real-Time Systems 
 
OOD was initially a design method based on the primary concepts of 
abstraction and information hiding. The two main approaches to OOD in 
the literature initally diverged on the importance of inheritance: 
 
1. Inheritance is viewed as a desirable but not essential feature of OOD 

- the view taken by the Ada programming community [Booch]. 
 

2. Inheritance is viewed as an essential feature of OOD - the view 
taken by the OO programming community - e.g. Smalltalk 
[Goldberg] and Eiffel [Meyer]. 

 
The initial advantage of Booch's approach (1986) was that it was more 
applicable to concurrent and real-time systems design – it  supported 
objects through information hiding but not classes or inheritance, 
Booch’s later approach (1991) supported classes and inheritance. 
 
 

Notation: 
 
•  Class diagrams  -  shows the system classes and the inheritance and 

uses relationships between all classes. 
 

•  Object diagrams  -  shows the system objects and the relationships 
between all objects. 

 

•  State transition diagram  -  shows the object states and the events 
that cause the transitions between object states. 

 

•  Timing diagrams  -  shows the dynamic interaction between objects 
by showing the time-ordered sequence of execution of operations 
between objects. 

 

•  Module diagrams  -  shows the allocation of classes and objects to 
modules in the physical system. 

 

•  Process diagrams  -  shows the allocation of concurrent processes 
(tasks) to processors in the physical system.   
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Steps in Method:  
 
Booch referred to his OOD method as "Round-trip Gestalt Design" →  a 
highly iterative holistic approach. 
 

1. Identify the classes and objects - find the key abstractions in the 
problem domain. Booch has had three attempts at this: 

 

a) Identify objects by finding all nouns and all operations by 
finding all verbs in the specification. 

 

b) Use Structured Analysis and identify objects from the DFD, 
i.e. sources or sinks of data have corresponding software 
objects to "hide them". 

 

c) Directly analyse the problem domain and apply object 
structuring criteria, i.e. each entity has a class which has 
defined attributes and its relationships with other classes are 
established. 

 
2. Identify class and object semantics  -  the interface and operations of 

each object is determined. This is very iterative due to the effect of a 
change in one object's interface on another object's definition. 

•  Preliminary class and object diagrams are developed. 
 
3. Identify the relationship between classes and objects  -  closely 

coupled to the above step - static and dynamic dependencies 
between objects are determined, i.e. object visibilities are 
considered.  

•  Inheritance and uses structures are defined. 
•  Class and object diagrams are refined. 
•  Preliminary module diagrams are developed. 
•  Object classification - as server (only provide operations), 

actor (only use operations) or agent (both provide and use 
operations). 

 
4. Implement classes and objects  -  classes and objects are allocated to 

information hiding modules and programs are allocated to 
processors.  Object internals are designed and developed. 
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Deliverables 
 
1. Class diagrams and class specification. 
2. Object diagrams and object specification. 
3. STDs and timing diagrams. 
4. Module diagrams and module specifications. 
5. Process diagrams and process specifications. 
 
 

Example:  Automotive Cruise Control and Monitoring System 
 
Preliminary Class and Object diagrams are developed: 

       
 

Note that the objects Engine, Brake, and Cruise Control Input (which 
would be classified as actors) send messages to Cruise Control 
corresponding to input from external devices they encapsulate.  Cruise 
Control (which is classified as an agent) encapsulates the STD and 
invokes operations in other objects, e.g. it sends a message to Throttle 
to Maintain Speed, Resume Cruising, etc.  Shaft Count is an example 
of a server object. 
 
 

Identifying Relationships between Classes and Objects 
 

The static and dynamic dependencies between objects are determined 
and the inheritance and uses structures are defined. 
 

[Gomaa, 1993] 

RDCS 423  -  Real-Time Distributed Computer Systems rm1/p26 

 

In this example all classes have only one instance (the object of the 
same name), except for the Maintenance class which has subclasses of 
Oil Filter Maintenance, Air Filter Maintenance, Major Service 
Maintenance. Each of the subclasses uses the same Maintenance 
Display class. 
The class 
diagram is very 
simple for this 
example: 
 
                 
 

 
 
 
 
 
 
Assessment of Method:   
 
1. The method is strongly based on information hiding, classes and 

inheritance - key concepts in OO software design. 
2. The structuring of the system into objects makes the system more 

maintainable and the components potentially reusable. 
3. The provision of inheritance allows components to be modified in 

a controlled manner as required. 
4. Maps well to language that support information hiding modules 

(e.g. Ada and Modula-2) and to languages that support classes 
and inheritance (e.g. C++, Smalltalk and Eiffel). 

5. Doesn't really address task structuring. 
6. A highly iterative procedure is required and procedures at each 

step are not very specific. 
7. Although the method does provide for timing diagrams it does not 

fully address timing constraints. 
 
 
 

[Gomaa, 1993] 
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Real-Time UML 
 
The purpose of UML is to support an integrated OO design methodology, 
and because of its completeness and widespread support it has been 
extended to model real-time embedded systems. Our focus here, while 
briefly reviewing the primary notation of UML, is the extensions to 
support real-time modelling. - in particular, its support for temporal 
scenario modelling and representations of tasking. 
 
 
UML Class Diagrams 
 
Relations among classes and objects: 
 

•  Association - messaging between objects 
bidirectional or unidirectional (open 
arrow) 

•  Aggregation - one object containing 
another (diamond indicates owner) 

•  Composition - aggregation plus 
create/destroy role (closed diamond or 
shown by inclusion) 

•  Generalization - inheritance of 
characteristics of a parent class (shown 
by open arrow directed towards parent)  

•  Refinement - generic (or template) 
elaborations of incomplete class 
specifications (dashed lines with closed 
arrows) 

 
Instance multiplicity: 
 

•  Integer - number of objects participating in the relationship 
•  * - unspecified multiplicity greater than zero 
 
 
 
 

RDCS 423  -  Real-Time Distributed Computer Systems rm1/p28 

UML Object Diagrams 
 
The UML object diagram shows the relationships between objects 
in the system, and although a context diagram is not explicitly 
supported, appropriate stereotypes on objects and messages can be 
used to create an object context diagram, e.g. for the elevator 
controller: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Message Stereotypes 
 
The context-level flows or messages are abstract at this point of the 
design, but expected data content, arrival pattern and synchronisation 
pattern can be defined (implementation being deferred until later in the 
design process). 
 
UML defines events as messages with a class stereotype of 
<<signal>> and attributes: 
•  Message arrival - episodic (unpredictable but bounded by a 

minimum interarrival time, may be random or bursty) or periodic 
(characterised by a period and jitter). 

•  Message synchronisation - call (sender blocked but single 
threaded), waiting (sender blocked but multi-threaded) and 
asynchronous (non-blocking) [Booch added extensions of balking 
(sender aborts if receiver not ready) and timeout (balking with a 
waiting time) synchronisations]. 
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Use Cases 
  
A use case is used to capture a customer requirement and it shows the 
general cases of interaction between the system and all external 
objects - it is built from the underlying event flows on the context 
diagram.  
 
Ultimately use cases may be decomposed into scenarios which show 
the detailed object interactions (i.e. scenarios are instances of use 
cases). Use cases may also be abstracted from a number of scenarios 
defined through discussion with the customer. 
 
Some example scenarios 
from the Ride use case: 
 
•  Elevator at floor 
•  Elevator must travel to 

the floor 
•  An elevator must handle 

a pending request (before 
or after picking up a 
potential passenger). 

•  Passenger issues another 
request 

 
 
Scenarios can be modelled in two ways in UML: sequence diagrams 
and collaboration diagrams. Sequence diagrams (the most commonly 
used) emphasise messages and their sequence, while collaboration 
diagrams tend to emphasise system object structure. 
 
Vertical lines are used to represent objects, and horizontal directed 
lines represent messages. Each message starts from an originator 
object and ends at a target object, with time flowing top to bottom. 
The text annotations describe object names, message names and the 
conditions associated with the message. 
 

Service Person 

Elevator  

Potential 
Passenger 

Passenger 

Ride 

Hold Door 
Open 

Request  
Elevator 

Service 
Elevator 
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UML Sequence Diagrams 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additional information on sequence diagrams 
 
•  Event identifier: reference character for message triggers and 

outcomes (e.g. a: Passenger 1 is on floor 6, b: Elevator arrives on 
floor 6). 

 

•  Timing constraints - two types: 
1. Marker bar with time difference between events, e.g.        

20ms 
2. Relational expressions between events, e.g. {e - d < 500 ms} 

 
UML currently only provides limited specification of timing 
constraints via OCL, so additional notation is usually required, e.g. a 
soft time constraint between two events could be represented by:  
 AVE (b - a) < = 3 sec     where AVE is an average operator. 
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There are also variations on core UML that bridge the gap between 
sequence diagrams and state diagrams by allowing state marks on 
sequence diagrams, i.e. rounded boxes on the vertical object lines that 
represent the change of state of an object in response to events. 
 
UML State Diagrams 
 
UML state diagrams extend the basic concept of Finite State Machines 
in three ways: 

•  Nested hierarchy, e.g. 
•  Concurrency, e.g.    
•  Extended transitions, e.g.  

  event-name(parameters)[guard]/action list^event list 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
State diagrams, although capturing all state dependent behaviour of an 
object, do not show typical paths through the system - this is the 
function of scenarios. Scenarios can be represented by conventional 
timing diagrams (not defined in UML) or sequence diagrams (which 
are defined in UML).  
 
Events can also be structured in object hierarchies, e.g. input events 
from a mouse or keyboard, or exception event objects handling 
progressively more detailed exceptions. 

        Main Task 

        Start 
       End 

H 

T7 
T3(a,b,c) 

T4 
T2 

T1/z  
T5^T3(x,y,z) 

T8[w < 5]  

T14[p = 2]  
[s]  
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UML System Task Diagrams 
 
UML can model concurrency in two ways: 
•  Class and object diagrams can show tasks directly 
•  State diagrams can show concurrent component execution 
 
A System task diagram is a filtered object diagram than only shows 
concurrent threads of execution. An extension to core UML created for 
the task object is the <<active>> stereotype. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each processor is identified with its multiplicity (1, 2, …, *)  and the 
multiplicity of each task is shown where appropriate. Each task is 
rooted in a single active composite object that receives events for that 
task and dispatches them to the appropriate object within the task. 
 
 
N.B. There are many extensions to UML in preparation (V1.4 was  
released in late-2001, V1.5 is in draft and V2.0 is in preparation), see 
www.omg.org/uml for the latest. 
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Rational Rose Real-Time (formally ObjectTime) 
 
UML for Real-Time grew out of the Real-Time Object-Orientated 
Modelling langauge (ROOM) with terminology being aligned with 
UML 1.1 but retaining all the semantics of ROOM models.  There are 
a number of specific additional constructs used in Rose Real-Time that 
accommodate the mapping from ROOM models.  
 
Capsules 
 
UML for Real-Time provides built-in light weight concurrent objects, 
known as capsules. Capsules are simply a pattern for providing light-
weight concurrency directly in the modeling notation. A capsule is 
implemented in Rose RealTime as a special form of class.  
 
Capsules are highly encapsulated and communicate through special 
message-based interfaces called ports. The ports are in turn connected 
to other capsules, enabling the transmission of messages among 
capsules. The advantage of message-based interfaces is that a capsule 
has no knowledge of its environment outside of these interfaces, 
making it a much more flexible and robust than regular objects.  
 
Capsule structure diagrams 
 
A new diagram has been 
introduced that specifies the 
capsule's interface and its 
internal composition. The 
diagram is called a capsule 
structure diagram (based on 
the UML 1.3 specification 
collaboration diagram). The 
semantics of the capsule 
structure diagram allow 
Rose RealTime to generate 
detailed code to implement 
the communication and aggregation relationships among capsules.  
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Mapping capsules to threads 
 
Rose RealTime allows designers to make use of the underlying multi-
tasking operating system so that the processing of a capsule on one 
thread does not block the processing of capsules on other threads. 
Designers can specify the physical operating system threads onto 
which the capsules will be mapped at run-time. Not every capsule 
should run on a separate thread. For most capsules, it is sufficient to 
leave them in one thread and allow the Services Library controller to 
invoke their behavior as messages arrive.  
 
Capsules with transitions that may block, or that have excessively long 
processing times, should be placed in separate threads. Deciding 
which capsules need to execute in different threads is a design issue.  
 
Protocols  
 
The set of messages exchanged between two objects 
conforms to some communication pattern called a 
protocol. A protocol comprises a set of participants, 
each of which plays a specific role in the protocol. Each 
such protocol role is specified by a unique name and a 
specification of messages that are received by that role 
as well as a specification of the messages that are sent 
by that role. As an option, a protocol may have a 
specification of the valid communication sequences; a 
state machine may specify this. Finally, a protocol may 
also have a set of interaction sequences (shown as 
sequence diagrams). These must conform to the protocol state 
machine, if one is defined. 
 
Hierarchical State Machines 
 
A state can be composed of other states, called substates. 
This allows modeling of complex state machines by 
abstracting away detailed behavior into multiple levels.  
A state that has substates is called a composite state.  
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UML Patterns for Real-Time Software Design 
 
Design patterns are simply a formalisation of a particular approach to 
a common problem in a context. They can be described by text 
(usually in a format that specifies the problem context, the solution and 
any constaints) and/or diagrams. UML is particularly useful in this 
context. Two examples will help illustrate (note that in UML notation 
a pattern is described by a dashed oval connected to partcipating 
entities with a dashed line). 
 
Safety Executive Pattern 
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RDCS 423  -  Real-Time Distributed Computer Systems rm1/p36 

Broker Pattern 
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Broker Pattern
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