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STOCHASTIC PETRI NET MODELS 
 
Foundations 
 
Probabilistic performance models use stochastic processes to represent 
the behaviour of complex systems by avoiding a detailed deterministic 
description.  A Stochastic Petri Net (SPN) model allows the 
synchronization and concurrency aspects of the system model to be 
captured by the Petri Net (PN) and be combined with the stochastic 
description.  
 
The key attribute of SPNs is that an exponentially distributed random 
variable is associated with each of the PN transitions. This random 
variable (say X(t)) characterising the stochastic process represents the 
(discrete) state in which the system resides for some sojourn time (i.e. 
the time before transition firing): 
 

 
 
 
 
 
 
 

A continuous-time, discrete state-space stochastic process can be 
described as a Markov process if: 
 

 P[X(tn+1) = xn+1 | X (tn) = xn, X (tn-1) = xn-1, . . . , X (t0) = x0]  = 
  P[X(tn+1) = xn+1 | X (tn) = xn,] 
 

with tn+1  >  tn  >  tn-1  
.  .  .

  > t0  where xk ∈  S, the state-space of X(t) 
 
i.e. the stochastic process is memoryless in the sense that the future 
evolution of the process only depends on the current state and not on 
the previous behaviour of the process. 
 
Let pij(t, u) = P[X(u) = j | X(t) = i] be the probability that the process is 
in state j at time u given that it was in state i at time t. 
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Where the process is also homogeneous the transition probabilities 
only depend on the time difference τ  =  u - t so that: 
 

 pij(τ) = pij(t, t+τ) = P[X(t+τ) = j | X(t) = i] 
 
Let πi(t) = P[X(t) = i] be the probability that the process is in state i at 
time t. Then using the Chapman-Kolomogrov equation it can be 
shown that:  
 

d t
dt
iπ ( )

 =
j S∈
∑ qji πj(t) 

 

i.e.  the equation describing the probability that a process is in state i is 
governed by a first order differential equation driven by the sum of the 
products of transition rates from all other states and the probability of 
being in those states. 
 
This can be put more concisely in matrix form, i.e: 
 

 Q = [qij],  ππππ(t) = {π1(t), π2(t), . . .} and the differential equation  
 

becomes:   d t
dt
π( )  = ππππ(t)Q 

 

where Q is referred to as the infinitesimal generator (or transition 
probability matrix). 
 
These equations admit a general exponential solution: 
 

 ππππ(t) = ππππ(0)eQt 
 
Thus a homogeneous Markov chain with a memoryless property admits 
exponential solutions for the probability of being in a state and it also 
admits exponential solutions for the sojourn times in that state  
 
If the Markov chain has an equilibrium or steady-state condition, i.e. it 
is ergodic, we have: 
  

 lim ( )
t

d t
dt→∞

= =π π0 Q  
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Definition of the Stochastic Petri Net (SPN) 
 
The formal definition for the SPN is: 
 SPN = (P, T, A, M0, λ) 
 

 where P = {p1, p2, . . ., pn} is the set of places 
   T = {t1, t2, . . ., tm} is the set of transitions 
   A = {P × T} ∪  {T × P} is the set of input and output arc pairs  
   M0 = {µ1, µ2, . . ., µn} is the set of initial place markings 
   λ = {λ1, λ2, . . ., λm} is the set of transition firing rates 
 
Because of the memoryless property of the exponential distribution of 
the firing delays, SPNs are isomorphic to continuous-time Markov 
chains  →  there is a mapping between the two state transition systems 
in both state spaces and transition probabilities. 
 
If the transition firing times can be represented as a Markov Chain (MC) 
associated with a given SPN, then the MC can be obtained from the 
following rules: 
 

1. The MC state space S corresponds to the reachability set R(M0) of 
the SPN. 

 
2. The transition rate from state i (with marking Mi) to state j (with 

marking Mj) is given by:  qij = λ k
k Hij∈
∑  

where Hij is the set of transitions enabled by the marking Mi whose 
firing generates the marking Mj.  
 

Where the generated MC is ergodic (i.e. all states are aperiodic, 
recurrent and non-null), the probability distribution of the MC converges 
towards a steady-state distribution which is independent of the initial 
state distribution. 
 
From the above, the following matrix equation can be solved: 
 ππππQ = 0    
with an additional constraint from the law of total probability, i.e. πi

i
∑ =1 
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where Q is the infinitesimal generator matrix with elements given by 
rule 2 above, and ππππ is the vector of steady state probabilities. 
 
From the steady state distribution ππππ some SPN behavioural estimates can 
be obtained: 
  
1. The probability of some condition holding in the SPN.  The 

condition is represented by a subset A of R(M0), is given by: 
 

  P[A] = πi
i A∈
∑  

2. The expected value of the number of tokens in a given place of the 
SPN.  If A(i, x) is the subset of R(M0) for which the number of 
tokens in place pi is x (and the place is k-bounded), then the 
expected value of the number of tokens in pi is given by:  

 

  E[µi]  = nP A i n
n

k
[ ( , )]

=
∑

1

 

 
Example 
 
What is the cycle time? 
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The reachability tree is: 
 
M1 = (1,0,0,0,0 ) 
 
 
M2 = (0,1,1,0,0) 
 
 
M3 = (0,0,1,1,0)   M4 = (0,1,0,0,1) 
 
 
M5 = (0,0,0,1,1) 
 
 
         M1 

 

Which by rule 1, can be represented as a Markov chain: 
 

 
 
 
 
 
Rule 2 is used to generate the infinitesimal generator matrix Q with 
elements qij = λ k

k Hij∈
∑ where Hij is the set of transitions enabled by the 

marking Mi whose firing generates the marking Mj: 
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Using SPN behavioural estimate condition 1, the probability of being in 
state Mi is given by: 
  P[Mi] = πi 
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Note also that the matrix equation ππππQ = 0 can then be expressed in the 
form: 
 
 2P[M1] = 2P[M5]          (1)  
 2P[M2] = 2P[M1] + 3P[M3]         (2) 
 4P[M3] = P[M2]           (3) 
 P[M4] = 3P[M5] + P[M2]         (4) 
 5P[M5] = P[M4] + P[M3]         (5) 
 
 

These equations can be derived directly from a 'flow balance' being 
applied to the product of the transition rate and the steady state 
probabilities at each MC state. For example, in the last equation above 
the sum of the transition rates on the outgoing arcs of state M5 is 5 and 
this is multiplied by the steady-state probability of state M5.  This must 
balance the sum of the transition rates on all incoming arcs multiplied 
by their corresponding steady-state probabilities (in this case, λ2 = 1 
from M4 and λ3 = 1 from M3). 
 
 

Finally, the additional constraint condition: πi
i
∑ =1   is applied so that: 

 P[M1] + P[M2] + P[M3] + P[M4] + P[M5] = 1     (6) 
 

Using (3) above we have: 8P[M3] = 2P[M2] and in (2) we have: 8P[M3] 
= 2P[M1] + 3P[M3] → 5P[M3] = 2P[M1] 
 
and from this and (3) we have: 5P[M2] = 20P[M3] = 8P[M1] 
 
From (4), (1) and the above we have:  
 P[M4] = 3P[M5] + P[M2] = 3P[M1] + 8/5P[M1] = 23/5P[M1] 
 
Thus using (6) we have: 
 P[M1] + P[M2] + P[M3] + P[M4] + P[M5] = 1 
 →  P[M1] + 8/5P[M1] + 2/5P[M1] + 23/5P[M1] + P[M1] = 1 
 →  43/5P[M1] = 1  → P[M1] = 5/43 = 0.1163 
 
hence P[M2] = 8/43 = 0.1860, P[M3] = 2/43 = 0.0465, 
  P[M4] = 23/43 = 0.5349, and P[M5] = 5/43 = 0.1163 
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Using SPN behavioural estimate condition 2 (the expected value of the 
number of tokens in a given place of the SPN), we note that no place in 
the reachability tree exceeds a 1-bounded condition  →  the expected 
value reduces to:  
 

  E[µi]  = πi
i A i∈
∑

( , )1
 

 

i.e. the expected value of the number of tokens in place pi is the sum of 
the steady-state probabilities in a subset of the reachability set of the 
SPN (i.e. also the states of the MC) for which the number of tokens in 
place pi is 1.   
 
In this example, the expected values of token occupancy in each SPN 
place is given by: 
 E[µ1 = 1]  =  π1  = P[M1]  = 0.1163 
 E[µ2 = 1]  =  π2 + π4 = P[M2] + P[M4]  = 0.7209 
 E[µ3 = 1]  =  π2 + π3 = P[M2] + P[M3]  = 0.2325 
 E[µ4 = 1]  =  π3 + π5 = P[M3] + P[M5]  = 0.1628 
 E[µ5 = 1]  =  π4 + π5 = P[M4] + P[M5]  = 0.6512 
 
 

Average Performance Analysis 
 
Little's law can be applied, i.e. the average number of customers in a 
queuing system ( N ) is equal to the product of customer arrival rate (λ) 
and the average time spent in the system ( T ), i.e: 
 

 N = λ T  
 

In this example, the number of tokens entering and leaving the subsystem 
(made up of places p2, p3, p4, p5, and transitions t2, t3, t4, t5) is conserved.  
The entry transition to the subsystem (t1) is only enabled when place p1 
has a token  →  the utilization of t1 is E[µ1=1] = 0.1163. 
 
As the average transition rate for t1 is λ1 = 2, the average token flow from 
p1 is 0.1163 × 2 = 0.2326 token/unit time. 
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Due to the fork transition at t1, the average token flow through the 
subsystem per unit time is twice the flow through p1 → λ  = 0.4652 
token/unit time. 
 
The average number of tokens in the subsystem is the sum of the 
average number of tokens in all places in the subsystem, i.e: 
 

N = + + +µ µ µ µ2 3 4 5 
    = = + = + = + =E E E E[ ] [ ] [ ] [ ]µ µ µ µ2 3 4 51 1 1 1  
     = 0.7209 + 0.2325 + 0.1628 + 0.6512 = 1.7674 
 
Finally, from Little's law:  

 T = N /λ = 1.7674/0.4652 = 3.8 time units 
 
Thus the average time a token takes to return to p1 is 3.8 time units. 
 
 

Limitations 
 
Note that the state probabilities are a function of the reachability set, 
and hence are a function of the initial marking.  For example, if p1 had a 
marking of 2 tokens in the previous example, the reachability set would 
have 14 states (and for µ1 =3 it would be 30 states).  Thus the 
complexity of the MC grows rapidly. 
 
More general examples can have infinite reachability sets: 
•  can truncate the MC to obtain approximate results  
•  or reduce the SPN to a finite reachability set but retain the main 

characteristics of the system. 
 
The most significant limitation is that only average performance issues 
can be addressed and not the dynamic temporal properties of the system. 
     
 


