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PETRI NET MODELLING 
 
Petri nets are a form of computational model for designing and 
modelling systems, and are particularly useful where concurrent 
processing and dynamic sequential dependencies exist.  Petri nets are 
applied through modelling the system as an abstract machine that 
embodies all the salient features of the system under study. 
 
The most common approach using Petri nets is to use conventional 
design techniques to specify a system, then model it as a Petri net. The 
Petri net is analyzed and any problems encountered in the net suggest 
flaws in the original design, which is then modified, and the process 
iterates: 
 

 
  
 
 
 
 
 
 
A more radical approach is to perform the entire design and 
specification process in terms of Petri nets (PNs).  This approach 
requires an additional transformation of the PN model into a working 
system. 
 
The major characteristics of PNs that make them suitable for systems 
modelling can be itemised: 
 

•  PNs support an explicit representation of causal dependencies and 
independencies. 

•  PNs support system description at various levels of abstraction. 
•  PNs represent system properties using the same methods as the 

system itself, e.g. explicit concurrency. 
•  Correctness proof systems use the same methods as system model 

construction. 
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Definition 
 
A Petri net structure is a four-tuple C = (P, T, I, O) where: 
 

•  P = {p1, p2, . . . , pn} is a finite set of places 
•  T = {t1, t2, . . . , tm} is a finite set of transitions 
•  I : T → P∞ is an input function 
•  O : T → P∞ is an output function  

 
A place pi is an input place of transition tj if pi ∈  I(tj) 
A place pi is an output place of transition tj if pi ∈  O(tj) 
The multiplicity of input and output places can be defined as #(pi, I(tj)) 
and #(pi, O(tj)) respectively. 
 
Example:   C = (P, T , I, O), P ={p1, p2, p3, p4, p5}, T ={t1, t2, t3, t4, t5} 
 
 

 I(t1) ={p1}, O(t1) ={p2, p3, p5} 
 I(t2) ={p2, p3, p5}, O(t2) ={p5}  
 I(t3) ={p3}, O(t3) ={p4} 
 I(t4) ={p4}, O(t4) ={p2, p3} 
 
 
 

Definition 
 
A Petri net graph G = (V, A) , is a bipartite directed multi-graph 
where: 
 

•  V = {v1, v2, . . . , vs} is a set of vertices 
•  A = {v1, v2, . . . , vs} is a multiset (or bag) of directed arcs. 
•  The set V can be partitioned into two disjoint sets P and T 

where P and T are defined in the Petri net structure, and  
V = P ∪  T and P ∩ T = ∅ . 

•  Each directed arc ai ∈  A has vertices, i.e. ai = (vj, vk) and 
vj ∈  P, vk ∈ T  or  vj ∈  T, vk ∈  P. 

•  The graphical notation assigns circles centred on vertices  
 vj ∈  P (or places), and bars centred on vertices vk ∈  T (or 

transitions). 
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Example:  the previous example PN structure can also be represented 
graphically as: 
 
 
 
 
 
 
 
 
 
 
 
As a notational convenience, where we have a high multiplicity of arcs 
on the PN graph, then they can be bundled, e.g: 
 
 
 
 
 
 
Definition 
 
A marking µ of a Petri net C = (P, T, I, O) is a function from the set of 
places P to the non-negative integers N, i.e. µ : P → N.  The PN 
marking can also be defined as an n-vector, µ = (µ1, µ2, . . . , µn) where 
n = |P|, and it can be interpreted as a number of tokens µi in each place 
pi for i = 1, . . . , n. 
 
A marked Petri net M = (C, µ) is a Petri net structure C with marking µ.  
On the graphical representation, tokens are denoted by "•" which are 
confined to places.  As the number of tokens in any place is 
(theoretically) unbounded, there is an infinite set of possible markings 
for a PN. 
 
For notational convenience, when the number of tokens becomes too 
large to represent with • 's, a number is used within the place. 
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Example 
 
 
 
 
 
    
 
 
 
 µ = (1, 2, 0, 0, 1) 
 
 

Execution Rules for Petri nets 
 
The execution of a PN is controlled by the number and distribution of 
tokens in the PN.  A PN executes by firing transitions which fire by 
removing tokens from their input places and creating new tokens to be 
distributed to their output places. 
 
Transitions can only fire if enabled by having at least as many tokens 
in their input places as the number of arcs from the input places.  These 
tokens are referred to as enabling tokens, and multiple tokens are 
required for multiple input arcs. 
 
A transition tj ∈  T is enabled for all pi ∈  P where: 
 µ(pi) ≥ #(pi, I(tj)) 
 
and it may fire when enabled to produce a new marking µ' which is 
defined by: 
 µ'(pi) = µ(pi)  -  #(pi, I(tj)) + #(pi, O(tj)) 
 
Transitions can continue to fire as long as at least one is enabled, 
otherwise execution halts. 
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Examples 
 
 
 
 
 
 
 
 
Enabled transitions:  t1,  t3,  t4 
 
 
 
 
 
 
 
 
Fire transition t4, enabled transitions:  t1, t3 
 
 
Petri Net State Spaces 
 
The state space of a PN with n places is the set of all markings, i.e. Nn. 
A next-state function can be defined, denoted by δ, which gives the 
change in markings after a transition fires. Thus if a transition tj is 
enabled, then δ(µ, tj) = µ1. 
 
Given an initial marking µo,  firing an enabled transition tj produces a 
new marking µ1 = δ(µo, tj).  From this marking, another enabled 
transition tk can fire to produce a new marking µ2 = δ(µ1, tk), and so on.  
Thus the execution of a PN can be defined by a sequence of markings 
(µo, µ1, . . . ) and a sequence of transitions (tjo, tj1, . . .) which are 
connected through the relationship: 
 

 δ(µk, tjk)  =   µk+1, for k = 0, 1, 2, . . . 
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For a Petri net C = (P, T, I, O) with marking µ, a new marking µ' is said 
to be immediately reachable from µ if there exists a transition 
tj ∈  T such that δ(µ, tj) = µ'.   
 
If a marking µ' is immediately reachable from some marking µ and a 
marking µ'' is immediately reachable from the marking µ', then µ'' is 
reachable from µ.  
 
A reachability set R(C, µ) for a PN C = (P, T, I, O) can be defined as the 
smallest set of markings for which if µ ∈  R(C, µ) and µ' ∈  R(C, µ), where 
µ'' = δ(µ', tj) for some tj ∈  T, then µ'' ∈  R(C, µ). 
 
 

Example 
 
 
 
 
 

µ = (1,0,0), immediately reachable markings are (0,1,0) and (1,0,1), and 
then (0,1,1) and (1,0,2) and so on. 
Thus R(C, µ) = {(1,0,n}, (0,1,n) | n ≥ 0}. 
 
An extended next-state function can be defined to map a marking and a 
sequence of transitions into a new marking. Given a sequence of 
transitions tj1, tj2, . . . , tjk and a marking µ, a new marking 
µ' = δ*(µ, tj1, tj2, . . . , tjk) results from the firing of the sequence of 
transitions.  
 
Alternative Basic Petri Net Forms 
 

A PN can also be represented as: 
•  a 4-tuple C = (P, T, F, B) where F and B are functions mapping 

places and transitions into the number of tokens needed for input (F) 
or produced for output (B) 

•  a triple C = (P, T, A) where A is a set of arcs 
•  C = TP where TP is a structure of appropriate pairs of places given 

linking between them through arcs and transitions. 
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Modelling with Petri Nets 
 
There are two primitive concepts in the Petri net view of a system's 
behaviour:  events and conditions.  Events are system actions which are 
controlled by the state of the system, and the system state can be 
described by a set of conditions.  
 
For events to occur certain conditions must hold, i.e. preconditions.  
On event occurrence, the preconditions may cease to hold and other 
conditions, i.e. postconditions become true. 
 
Example 
 
Consider a simple machine shop modelling problem, in which a machine 
waits until an order appears, then machines the ordered part and sends it 
out for delivery. 
 
The conditions for the system are: 

a. Machine shop is waiting 
b. Order has arrived and is waiting 
c. Machine shop is processing order 
d. Order is complete 

 
and the events are: 

1. Order arrives 
2. Machine shop starts on order 
3. Machine shop finishes the order 
4. Order is sent for delivery 

 
Represented as a event/condition table: 
 

Event Preconditions Postconditions 
1 - b 
2 a, b c 
3 c d, a 
4 d - 
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To map this to a PN it is only necessary to recall that conditions are 
modelled by places and events are modelled by transitions.  
 
Preconditions are inputs to transitions and postconditions are outputs 
from transitions:  
 
 
 
 
 
 
 
 

Tokens are used to represent the holding of a condition at initialisation. 
 
The PN model allows non-interacting enabled events to occur 
independently without synchronization, i.e. PNs are asynchronous by 
nature - there is no inherent measure or flow of time built in.  Time is 
indirectly represented as a partial ordering of the occurrence of a 
sequence of events which can take varying amounts of 'real' time. 
 
Concurrency in PNs is simply modelled as 
independent nondeterministic and non-simultaneous 
firing of transitions: 
 
Conflict in PNs is modelled by coupling transitions 
through common places (hence sharing common 
preconditions):  
 
PNs also execute nondeterministically, i.e. the 
selection of which transition to fire when several are 
enabled is made randomly.  In the basic PN model, 
transition firings are considered to be instantaneous and event 
occurrences cannot be simultaneous (since time is a continuous real 
variable). Conventional PN events are taken to be primitive - i.e. 
instantaneous and non-simultaneous.   
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Non-primitive events can take non-zero-time and thus may overlap other 
events - but they can be decomposed into primitive events, e.g: 
 
 
 
 
 
 
 
The same non-zero width transition bar is useful for abstracting multi-
level PNs in a hierarchical structure. 
 
Although PNs are inherently 
asynchronous they can be used to 
model synchronisation type 
problems, e.g mutual exclusion 
mechanisms, where only one process 
can access a shared data object at a 
time: 
  
PNs can also be applied to other 
'classical' synchronisation problems, 
such as the producer/consumer 
problem, the dining philosopher's 
problem, the reader/writer problem, 
and P/V operations on semaphores. 
 
 
PNs have also been applied to a wide variety of non-computational 
modelling applications, e.g. planning and scheduling on large projects, 
chemical reaction systems, communication networks, brain models, the 
rules of propositional calculus, and legal systems. 
 
See J.L. Petersen, "Petri net theory and the Modelling of Systems", 1981, 
Prentice-Hall, for more examples.  
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PETRI NET ANALYSIS 
 
Given a Petri net (PN) model of a system it should be possible to analyse 
it to lead to useful insights into the behaviour of the system.  Thus it is 
useful to consider what types of problems can be solved with PNs and the 
important properties that can be used to classify PN behaviour. 
 
 

Safeness 
 

A place in a PN is safe if the number of tokens in that place cannot 
exceed one.  A PN is safe if all places in the PN are safe, i.e. a place     pi 
∈  P, for a PN C = (P, T, I, O) with a initial marking µ, is safe if: 
 

 ∀ µ' ∈  R(C,µ), µ'(pi) ≤ 1 
 
 
 
 
 
 
 
 
 This PN is not safe   This PN has been made safe 
 
Boundedness 
 

Safeness is a special case of a more general boundedness property: a 
place is k-safe or k-bounded if the number of tokens cannot exceed k at 
that place, i.e:  a place  pi ∈  P, for a PN C = (P, T, I, O) with a initial 
marking µ, is k-safe if: 
 

 ∀ µ' ∈  R(C,µ), µ'(pi) ≤ k 
 
If every place is at worst k-safe then the PN can be described as k-safe, 
and a PN is bounded if all places are bounded. 
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Conservation 
 

For PNs that model resource allocation systems, conservation of tokens 
(hence resources) is an important property.  A PN C = (P, T, I, O) with 
initial marking a µ, is strictly conservative if: 
 

 ∀ µ' ∈  R(C,µ), 
pi ∈
∑

P
µ'(pi)   = 

pi ∈
∑

P
µ(pi) 

 

For this strongly constraining relationship to hold, it should be clear that 
the number of inputs to each transition must equal the number of 
outputs, i.e. |I(tj)|  =  |O(tj)|. 
 
Consider the examples: 
 

 
A non-strictly conservative PN     An equivalent strictly conservative PN 
 
In general, there may not be a simple one-to-one mapping between 
tokens and resources as some tokens may represent several resources.  
To generalize the conservation concept, a weighed sum of all reachable 
markings should be constant, i.e. a weighting factor wi can be applied to 
each place and we then have: 
 

 
i
∑ wi µ'(pi)   = 

i
∑ wi µ'(pi) 
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Liveness 
 

Another problem that may arise in 
resource allocation is deadlock - for 
example, where a process A has 
resource Q and a process B has a 
resource R and wants resource Q  →  
neither process can proceed.  This 
situation can be modelled by a PN: 
         
 
Where in the above p4 represents 
resource Q and p5 represents resource 
R.  We can see that transition firings in 
the sequence t1t2t3t4t5t6 or t4t5t6t1t2t3 do 
not result in deadlock, but any sequence 
starting with t1t4 or t4t1 results in 
deadlock.  

       Process A         Process B 
 
In a PN, a transition is live if it is not deadlocked, i.e. if it can be 
enabled.  Thus a transition tj of a PN, C is potentially fireable in a 
marking µ if ∃ µ' ∈  R(C,µ) and tj is enabled in µ'. 
 
A level of liveness can also be specified for each transition in a PN, from 
level 0 (dead) to level 4 (live for all markings) and intermediate levels 
specify liveness for an increasing number of possible firing sequences. 
 
 
 
Reachability and Coverability 
 

Given a PN C with marking µ and a marking µ' the following question 
can be posed:   Is µ' ∈  R(C,µ)?  This can be an important question, for 
example in the earlier example if a marking µ = (0,1,0,0,0,0,1,0) is 
reachable, then deadlock can occur.  
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A closely related  PN analysis problem is coverability and it can be 
stated as:  Given a PN C with initial marking µ and a marking µ', is there 
a reachable marking µ'' ∈  R(C,µ) such that µ'' ≥ µ' (i.e. is the marking µ' 
covered by some other marking µ''). 
 
Interest in reachability or coverability can be confined to a few key 
places (say representing resources) so a submarking reachability or 
submarking coverability modulo a set of places can be defined. 
 
 

Firing Sequences 
 

Another analysis approach is to concentrate on sequences of transition 
firings, as distinct from state changes.  This approach is more useful to 
resolve questions of liveness, for example, in the earlier deadlock PN 
example, firing sequences t1t4 or t4t1 result in deadlock. This analysis 
question has a direct connection with the languages associated with PNs. 
 
 

The Reachability Tree 
  

Consider the following PN which has initial marking (1,0,0) and two 
reachable markings resulting from firing the two enabled transitions: 
 
 
  
 
 
 
 
 
 
 
The reachability tree represents all possible transition firing sequences, 
and it is easy to see that a PN with infinite reachability set will have a 
infinite reachability tree.  
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For analysis purposes, it is useful to limit the tree to a finite size, i.e. the 
marking pattern that is repeated can be extracted and an arbitrarily large 
number of tokens represented with the symbol 'w'. 
 
Example 
 
For the 3 place/3 transition PN below, a finite reachability tree can be 
constructed: 
 
 
 
 
 
 
 
 
 
 
The reachability tree can now be used an analysis tool for some of the PN 
properties that have been defined earlier.  
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