
RDCS 423 - Real-time Distributed Computer Systems tr/p1

TEMPORAL OBJECT RELATIONS

The two common time entities of time points and time intervals can be
used to permit formal reasoning about time and temporal relationships.

Definition: time point - a real number that represents the occurrence time
of an instantaneous event and is an indivisible entity. Defined with
respect to a reference that should be the same for all time points.

Definition: let tα and tβ be two time points so that binary relations can be
specified between them:
• tα < tβ (i.e. tα before tβ) and its inverse tα > tβ
• tα = tβ

Definition: a convex time interval is a contiguous period that specifies a
range of time points such that:
 < tα, tβ > ≡ { t: tα ≤ t ≤ tβ }

Definition: the duration of a convex time interval < tα, tβ > is the time:
 < tα, tβ > ≡ | tβ - tα |

Definition: a non-convex time interval is a set of sub-intervals expressed
as a union of disjoint convex intervals.

On the basis of these definitions it is possible to define a number of convex
interval relations using the intervals, A = < t A

α , t A
β >, B = < t B

α , t B
β >:

• equal (A = B) ⇒ (t A

α = t B
α) ∧ (t A

β = t B
β)

• precede (A ≺ B) ⇒ t A
β < t B

α and
inverse succeed (B � A)

• meet (A ⇑ B) ⇒ t A
β = t B

α and
inverse met-by (B ⇓ A)

A

B
A

B
A

B

RDCS 423 - Real-time Distributed Computer Systems tr/p2

• overlap (A ∅ B) ⇒ t A
α < t B

α < t A
β < t B

β and
inverse overlapped-by (B ∅ u A)

• start (A ↑ B) ⇒ t B
α = t A

α < t A
β < t B

β and
inverse started-by (B ↑ u A)

• during (A << B) ⇒ t B
α < t A

α < t A
β < t B

β and
inverse contains (B >> A)

• end (A ↓ B) ⇒ t B
α < t A

α < t A
β = t B

β and
inverse ended-by (B ↓ u A)

These relations can be combined to express other relations, for example, the
disjoint relation (><), i.e:

 A >< B = (A ≺ B) ∨ (A � B)

and all the containment possibilities of interval A in interval B:
 A ↑ B ∨ (A << B) ∨ (A ↓ B)

Definition: the interval intersection of convex time intervals A and B is
defined for ¬ (A ≺ B) ∧ ¬ (A � B) as:

 A � B ≡ < max (t A
α , t B

α), min (t A
β , t B

β) >

and for (A ≺ B) ∨ (A � B) it is ∅

The intersection of two convex intervals that meet each other is a non-null
convex interval of zero duration, i.e. a time point.

Definition: the cover of convex time intervals A and B is a convex interval
defined as:

 A ∪+ B ≡ < min (t A
α , t B

α), max (t A
β , t B

β) >

A

B
A ⊎ B

A

B

A

B

A

B

A

B

A

B
A�B

RDCS 423 - Real-time Distributed Computer Systems tr/p3

Note that the cover is a symmetric and commutative operation, so that it can
be applied to a set of more than two intervals:

 { }∪ = ∪ ∪ ∪
=
+ + + +

i

n
Ci C C Cn1 1 2 Λ

Definition: the set of maximal convex sub-intervals of convex time
intervals A and B is defined as S ({A}, {B}), such that:

• A � B = ∅ ⇒ S = {A, B}

• A � B ≠ ∅ ⇒ S = {A ⊎ B}

The use of relations on event times and intervals is somewhat artificial due
to the varying granularity of time knowledge (in practice), and the fact that
intervals are not necessarily continuous but contain 'gaps'. To address this
issue, non-convex intervals are required.

The set of maximal convex sub-intervals of a non-convex time interval D is
the set of maximal convex sub-intervals of all its convex members {di}:

Definition: the set union of non-convex time intervals C and D is a non-
convex interval made up of the set of members in S ({C}) and the set of
members in S ({D}):

 {C} ∪ {D} ≡ S ({C}) ∪ S ({D})

A

B
S = A ⊎ B

A

B S = {A, B}

d1
S = {d1, d2, d3}

d2 d3

d1
S = {d1 ⊎ d2, d3} d2 d3

RDCS 423 - Real-time Distributed Computer Systems tr/p4

Also note that that the cover of the set union is:

 ⊎ ({C} ⋃ {D}) = < min (tC
α , t D

α), max (tC
β , t D

β) >
The set union is a symmetric and commutative operation, a property that
allows the operation to be defined on a set of more than two intervals:

 { }∪ = ∪ ∪ ∪
=i

n
Ci C C Cn1 1 2 Λ

Definition: the interval union of non-convex time intervals C and D is a
non-convex interval denoted by:

 {C} � {D} ≡ S ({C} ∪ {D})

We can note that the interval union cover is equal to the set union cover,
and that the interval union is commutative:

 { }
i

n
Ci

=1
 = C1 � C2 � • • • � Cn

FORMAL CONSTRAINT SPECIFICATION

Constraint specification can be expressed formally using the temporal
object relations defined earlier. Let the incoming constraint imposed on
the invoker by a remote object be TCin and let the constraint imposed by
the invoker on the remote object (invokee) be TCout.

Let Pin be the invoker's computation time interval associated with the
constraint TCin and all constraints are referenced to global time.

To produce a specification for TCout as a function of TCin the following
are needed:

• ℜ in and ℜ out are two convex interval relations
• a convex time interval TCR with constant duration ‖TCR‖
• the composite relation TCin ℜ in TCR ℜ out TCout

c1 c2 c3

d1 d2 d3

RDCS 423 - Real-time Distributed Computer Systems tr/p5

Examples: Let the constraint TCin = < t in
α , t in

β > and let the service to be
invoked be required to succeed TCin by at least γ time units. Thus in this
case we have:

• ℜ in ≡ ≺ and ℜ out ≡ ≺
• ‖TCR‖ = γ
• TCin ≺ TCR ≺ TCout

From these relations the following inferences can be drawn:
• TCin ≺ TCR ⇒ t in

β < t R
α

• ‖TCR‖ = γ ⇒ t R
β = t R

α + γ

• TCR ≺ TCout ⇒ t R
β < t out

α ⇒ t out
α > t in

β + γ
 i.e. the service to be invoked succeeds TCin by more than γ time
 units.

Example: Let the service to be invoked complete in less than γ time units
after TCin has completed. Thus in this case we have:

• ℜ in ≡ ∅ and ℜ out ≡ � ∨ ⇓ ∨ ∅ u ∨ ↑ u ∨ � ∨ ↓ u
• ‖TCR‖ = γ
• TCin ℜ in TCR ℜ out TCout

From these relations the following inferences can be drawn:

• TCin ∅ TCR ⇒ t R

α < t in
β

• ‖TCR‖ = γ ⇒ t R
β = t R

α + γ

• TCR ℜ out TCout ⇒ t out
β ≤ t R

β ⇒ t out
β < t in

β + γ
 i.e. the service to be invoked completes in less than γ time units
 after TCin completes.

t R
β < t in

β + γ

t R
β > t in

β + γ

TCR

TCout TCin

t

RDCS 423 - Real-time Distributed Computer Systems tr/p6

The temporal object relations are useful for specifying and analysing
temporal properties. They can also be combined with resource allocation
and schedulability considerations to support time-based object resource
management.

TCR

TCin

t

TCR ⇓ TCout
TCout

TCR ∅ u
TCout

TCR � TCout
TCout

TCR ↑u TCout
TCout

TCR ↓u TCout
TCout

TCR � TCout
TCout

RDCS 423 - Real-time Distributed Computer Systems tr/p7

TIME CONSTRAINT PROJECTION AND
PROPAGATION

Objects must be able to view the temporal properties of other executing
objects since they may require services from another object as part of a
complete task. The same requirement is posed for fault-tolerance
redundancy where remote invocations of server objects may be required.
This demands that time constraints are also satisfied in a distributed
execution environment → time constraint projection is required for
remote objects.

Constraint Projection

Each time constraint represents a set of possible occurrences in which
the task beginning, task end and duration are constrained. This
information can be most easily interpreted on a 2-D occurrence timing
diagram, i.e:

The diagonal represents the axis of time points since Begin(time) =
End (time). An additional variance is introduced by time-knowledge
uncertainty due to local clock variation → any time point creates an
interval in the begin-end time plane, i.e:

End

Begin

t

End

Begin

t

RDCS 423 - Real-time Distributed Computer Systems tr/p8

An occurrence interval for object Id can be defined between the
Earliest Begin Time (after Taft(condition1)) and the Lastest End Time
(before Tbef(condition2)) with a computation duration at least equal to CId.

This can more clearly be represented on the 2-D begin-end plane. Each
point that lies within the window satisfying the earliest and latest
begin time, earliest and latest end time and the range of permissible
object execution durations, is referred to as the time constraint laxity
window, e.g:

Periodic time constraints, which consist of finite convex subintervals (and
combine to form non-finite non-convex intervals) are not modelled by
this method. A simplification that is commonly made to apply this
approach is to restrict analysis to a limited 'local' region.

Where we have two periodic objects with periods of T1 and T2 time units
respectively (where T1, T2 > 1) then an interval of duration T1T2 will
contain all possible relations between the subintervals → this can be used
as the local region in which to restrict analysis.

Taft(condition1) Tbef(condition2)
 CId

Id:: t

Earliest
Begin Latest

 Begin
Earliest
End

Latest
End

End

Begin

t

Earliest Latest

Earliest

Latest

RDCS 423 - Real-time Distributed Computer Systems tr/p9

Constraint Propagation

The preceding section considers the handling of uncertainty in describing
a global time point in terms of local clocks, but uncertainty can also arise
in describing a time point as observed by a remote clock in terms of local
time knowledge.

A temporal relationship between two occurrences can be expressed in
terms observed by either occurrence, e.g. when a remote client object
imposes a time constraint on a server the time reference is either that of
the client or the server. Because this requires that the server node has
knowledge of the time uncertainties of the remote node, it is not a
practical approach in distributed systems.

A better approach is to rely only on local knowledge of uncertainties
and work from a common reference for the client and server. Thus the
server object interprets the imposed constraint of TCi through the
mapping TCi TCi' with respect to a global time, i.e:

Given this framework for propagating time constraints from invoking
objects to become requirements on invoked objects, projection of one
time constraint (TC1) on to another (TC2) can be looked at in general:

Requirement

Local
Mapping

Object

Time Knowledge

Local
Mapping

Object

Time Knowledge

Global time

Constraint
Requirement Constraint

RDCS 423 - Real-time Distributed Computer Systems tr/p10

• The latest possible end (TC1) is projected onto the begin-axis of TC2

creating a small occurrence window A. In A the relation TC1 ≺ TC2
holds, i.e. begin(TC2) > endmax(TC1).

• The earliest possible begin (TC1) is projected onto the end-axis of

TC2 creating a small occurrence window B. In B the relation
 TC2 ≺ TC1 holds, i.e. end(TC2) < beginmin(TC1).

• In the region C, the intersection of TC1 and TC2 is non-null, i.e:

end(TC2) > beginmax(TC1) and begin(TC2) < endmin(TC1).

• The other two cross-hatched regions indicate where the temporal

relation between the two time constraints requires accurate
knowledge of the actual begin and end points, i.e:

 \\\ → endmax(TC1) > begin(TC2) > endmin(TC1)
 /// → beginmax(TC1) > end(TC2) > beginmin(TC1)

C

A

B

TC
1

t
End

Begin

TC
2

RDCS 423 - Real-time Distributed Computer Systems tr/p11

End

Begin

t

Min Max

Min

Max

Time constraint laxity window contraction with time uncertainty

Assume the time servers use a linear clock interpolation so that the
service for a get-time request at node p is:

 Tp(t) = ap(t)Cp(t) + bp(t), t ≥ tp
(0)

where Cp(t) is the local clock time which synchronizes periodically at
least every τ time units with other system clocks. The synchronization
times are denoted by the sequence tp

(i) and the bounds on the correct
knowledge of ap(t) and bp(t) sets the scale and offset in which the time
constraint projection is propagated.

Define the terms to express the uncertainty in the local knowledge of a
time constraint - let this be TCi:

 ∆ap = max | 1 - ap(endmax(TCi)) |
 ∆bp = max | bp(endmax(TCi)) |
 δap = max | 1 - ap(beginmin(TCi)) |
 δbp = max | bp(beginmin(TCi)) |

Suppose the time constraint imposed in terms of local time is TCi', so that
at a node p, an imposed time constraint TCi maps to the following local
bounds on TCi':

 beginmin(TCi') = beginmin(TCi) + δap beginmin(TCi) + δbp
 beginmax(TCi') = beginmax(TCi) - δap beginmax(TCi) - δbp
 endmin(TCi') = endmin(TCi) + ∆ap endmin(TCi) + ∆bp
 endmax(TCi') = endmax(TCi) - ∆ap endmax(TCi) - ∆bp

The result of the clock variations
which cause variations in the local
bounds on TCi', is that the constraint
laxity window is reduced in size in all
dimensions. The projection of a
globally defined time constraint to a
locally defined time constraint is
denoted by the mapping: TCi TCi'

