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TIME HANDLING 
 
Major issues: 
 

•  Representation 
•  Temporal Reasoning 
•  System time measurement and management 

 
Time Representation 
 

1. Point based - world view of the system has events that occur at 
a time instant, results in a state change, and takes zero time to 
occur. 

 

2. Time-interval based - activities take a finite amount of time and 
have associated start and stop times. 

 

 
    
 

         
 
    
 
    
 
 
 
 
 

 

Time point representation has the disadvantage that instantaneous events 
are not decomposable into sub-events while retaining the event ordering.  
The timer interval approach allows partially overlapping relations but 
may also admit a cumulative loss of time if not properly managed, e.g. 
clock interrupt to actual store delay. 
 
A Real-Time system needs both representation types - time point based 
for deadline specification and interval based for process computational 
time specification. 
 

running conveyor belt 
looking for object

detecting an object 

lowering manipulator

raising object 

start conveyor belt 
detect object 

raise object 

lower manipulator 

1 2 

RDCS 423 - Real-time Distributed Computer Systems th/p2 

Time Constraints 
 
Time constraints can be viewed as requirements on processes to start 
executing after satisfying their start conditions, and to complete execution 
before the respective deadlines.  An extension is to include periodic 
executions of processes with finite execution time intervals. 
 
Formally, we can describe the time constraint as a 5-tuple: 
 

 (Id, Taft(condition1), CId, fId, Tbef(condition2)) 
 
where:  Id is the executable process or object name 
        Taft(condition1) is the event after which execution of Id begins 
       CId is the bound on the computation time of each instance of Id 
       fId  is the frequency with which the computation is to occur 
      Tbef(condition2) is the deadline before which execution of Id must 
       terminate 
 
 
 
 
 
•  The time interval  Tbef(condition2) - Taft(condition1) is known as the 

occurrence interval.  
•  Where no deadline constraint is imposed we have CId = ∞ (or an off-

line computation situation in contrast to on-line computation). 
•  In this simple time constraint model, the bounds are assumed to be 

deterministic and are derived from requirements external to the 
object. 

 
 
Time service and synchronization 
 
In a distributed system each site or node in the network should have access 
to a source of time knowledge - i.e. a clock. It is useful to examine the way 
in which time knowledge can be characterised and communicated. 
 
 

Taft(condition1) Tbef(condition2) < CId 
 1/fId 

Id:: t 
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Definitions: 
 
1. A standard or reference clock i has ∀ t:  Ci(t) = t 
 
 

2. A clock i is correct at time to if Ci(to) = to 
 

3. A clock i is accurate at time to if 
dC t

dt
i

t to

( )

=
= 1 

A clock drifts if it is inaccurate at some time. 
 
Clock synchronization:  used for event ordering purposes and 
enhancement of time knowledge. A clock update during synchronization 
can be expressed as: 
 

 Ci(ti)  ← F [Ci1(ti1), Ci2(ti2), . . . , Cik(tik)] 
 

where Ci1(ti1), Ci1(ti1), . . ., Cik(tik) are k clocks that are used to synchronize 
Ci(•) through some algorithm F (which ideally should be monotonic to 
preserve local event ordering).  
 
Real-time systems require structured time ordering mechanisms to reason 
about events - an event is a detectable, instantaneous and atomic change 
in system state.  The system state includes the set of clocks {Ci (•)} 
 
Define {Ci (t) = Co} as the set of system states for which the clock i has 
time Co then the following predicates can be defined: 
 

  Taft(Co) = true  if Ci(t) ≥ Co, otherwise false 
 Tbef(Cd) = true  if Ci(t) ≤ Cd, otherwise false 
 
 

Types of Clock Systems 
 

1. Central:  one accurate clock, possibly with a standby for fault 
tolerance; special purpose hardware to handle requests from any 
executing process. 

 

2. Centrally controlled:  master clock polls slave clocks and clock 
differences are used to correct slaves; master clock failure  →  new 
master clock. 
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3. Distributed:  all sites homogeneous, updating their own clocks after 
receipt of time from all other clocks; fault tolerance is protocol based  
→  no side effects of site failure but communications traffic is 
heavier. 

 
Centrally controlled clock system algorithms 
 
Also called master-slave clock systems.  Suppose we have a master clock 
i starting a clock synchronization procedure at time T1 - it has current 
clock value Ci(T1) with error e1. 
 
The clock value is sent to slave j, takes µ i

j time units to reach j and is 
received at time T2.  At that time the slave clock has a value Cj(T2) with 
error e2: 
 
 
 
 
 
 
 
 
 

At time T2 we have: Ci(T1) + e1+ µ i
j = Cj(T2) + e2 = T2 

 

and the slave can compute a difference:    d1 = Cj(T2) - Ci(T1) 
 

           = µ i
j + e1 - e2 

 

Suppose that the error difference (i.e. e1 - e2) can be modelled as a clock 
skew of the slave ξj with a zero-mean random noise process E j

1, i.e: 

 d1 = µ i
j + ξj  - E j

1 
 
The same process is repeated in the reverse direction, i.e. the slave reads a 
clock value of Cj(T3) at time T3 and sends it to the master with the 
calculated difference d1.  The message has travel time µ j

i and is received 
at T4 where the master reads Ci(T4) with error e4.   

T1 = Ci(T1) + e1 T1 +µ i
j  

T2 = Cj(T2) + e2 T3 = Cj(T3) + e3 

T4 = Ci(T4) + e4 T4 -µ j
i  

t 

t 

slave 

master 
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The master now computes d2  = Ci(T4) - Cj(T3) 
                  = µ j

i + e3 - e4 = µ j
i - ξj - E j

2  

where e4 - e3  is the same slave clock skew ξj and E j
2 is another noise process. 

 
From these values of d1 and d2 we have: 
 (d1 - d2)/2 = [(µ i

j + ξj  - E j
1) - (µ j

i - E j
2 - ξj)]/2 

          = ξj + (µ i
j - µ j

i )/2 - ( E j
1 - E j

2 )/2 
 

A number of successive polls can be taken to produce: 
 ∃ξ j = ξj + (µi

j - µ j
i )/2 - ( E j

1 - E j
2)/2 

where µ i
j  ≈ µ j

i and the noise processes E j
k are symmetrically distributed, 

then ξj  ≅  ∃ξ j  which is the average clock skew which can be used to correct 

the clock Cj(•).  Better knowledge about µ i
j  and µ j

i can also be used  to 
improve the estimate. 
 
Suppose the clock is synchronized with this algorithm at least every τ 
seconds and the error is given by: 
 

 ∈ j =  (µi
j - µ j

i )/2 - ( E j
1 - E j

2)/2 
 
Also suppose the clock for each slave has a maximal drift rate of δj.  A 
bound  on the maximal clock difference for any slave is given by: 
 

 2 2τ δmax ( ) max ( )j j j j+ ∈  
 

i.e. the update frequency (1/τ) controls the bounds on synchronization 
correctness between updates. 
 
The imposed communication load for n processors and p polls is (2p+1)n 
messages. 
 
Compensation for the communication delays can be partially 
accomplished by separating the delays into predictable and unpredictable 
components: µ i

j = ∃µ i
j + ∆µ i

j . 
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This algorithm is the basis for the TEMPO algorithm used in 4.3BSD 
UNIX and the ICMP protocol.  Predictable communication delay 
compensation can be obtained from the ICMP routing timestamp option 
field. 
 
 

Distributed Clock Algorithms 
 
This approach offers increased fault tolerance at the expense of an 
increased communication load.  There are numerous examples of this type 
of algorithm, but to illustrate we only need to look at the two major 
components: 
 

•  fundamental ordering  
 

•  accuracy enhancement 
 
Fundamental ordering:   this approach is based on message timestamping 
with the following properties: 
 

•  the accuracy of clock i is bounded by a drift rate δ: 

  1−
dC t

dt
i ( )

  <  δ   << 1 
 

•  the communication interconnection graph of the computation nodes 
is closely connected with diameter d. 

 

•  the network imposes an unpredictable, but bounded, message delay 
D, i.e. µ < D < η where µ and η are the bounds. 

 
Algorithm: 
 

•  the local clock is incremented on each local time event: 
  Ci(t)  ←  Ci(t)+1 
 

•  each process with a clock sends a message to the others every τ 
seconds (at least) and initiates a timestamp Tm. 

 

•  on receipt of a external Tm the receiver sets its clock to: 
  Ci(t)  ←  max(Ci(t), Tm + µ) 
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The communication cost of an update is n(n-1) messages for n clocks.  A 
bound on the variation of each clock can be written as: 
 

  ∀ ∀ < +i j C t C t di j: ( ) - ( ) ( )2δτ η  
 

Note that this algorithm only achieves an ordering goal   →  clock 
differences are bounded without improvement. 
 
 

Time intervals - minimize maximum error:  this approach uses 
knowledge of the bounds on the error of the clocks with the following 
assumptions: 
 

•  every clock i is known to be correct within the interval: 
 

  [Ci(t) - Ei(t), Ci(t) + Ei(t)] 
 

 where Ei(t) is a bound on the error of' clock i. 
 
 

•  the error interval is constructed from the following: 
 - the error (made up of discretization and other constant errors)  
    denoted by ∈ i has effect at the clock reset time denoted by ρi. 
 - the delay from clock i being read until another clock j uses the 
   readout for its update µi

j . 
 - the degradation (or drift) in time that develops between consecutive 
   resets is δi.  
 
The algorithm itself has two rules:  a response rule and a synchronizer 
rule, i.e. a request transmitted by the synchronizer rule at node j activates 
a response from node i: 
 
The response rule from node i ≠ j is: 
 

•  Ei(t)  ←  ∈ i + [Ci(t) - ρi]δi 
 

•  Send [Ci(t), Ei(t)] to node j 
 

•  where the modified error bound Ei(t) indicates an interval in which 
node i's clock is correct. 
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The synchronizer rule is repeated at least every τ time units and is as 
follows: 
 

•  ∀ i  ≠ j:   request [Ci(t), Ei(t)] from node i. 
 

•  for each [Ci(t), Ei(t)] received, check that there is a non-empty 
intersection in the intervals [Ci(t) - Ei(t), Ci(t)+ Ei(t)] and  

 [Cj(t) - Ej(t), Cj(t)+ Ej(t)], otherwise ignore this node. 
 

•  if Ei(t) + (1+δj)µi
j  ≤ Ej(t), i.e. the error of the response plus the 

response delay produce an error smaller than the local error, 
otherwise ignore this node.  

 

•  if all the above conditions hold, then the synchronizer at node j can 
reset its clock and improve its time knowledge via: 

 

  Cj(t)  ←  Ci(t)    -- clock update 
  ∈ j  ←  Ei(t) + (1+δj)µi

j     -- error update 
  ρj  ←  Ci(t)     -- reset time update 
 
A related intersection algorithm uses a modified synchronizer rule, i.e.  
the intersection of all the response time intervals [Ci(t) - Ei(t), Ci(t)+ Ei(t)] 
is taken - clock update is then to the interval's midpoint, and the error 
updated to half the interval.  If there is no intersection interval then no 
update is made: 
 
 
 
 
 
 
 
 
 
 
The intersection algorithm has superior accuracy to the minimize maximum 
error algorithm, but has poorer fault tolerance. 
 

Ci(t) -Ei(t) Ei(t) 

Ci(t) -Ei(t) Ei(t) 

Ci(t) -Ei(t) Ei(t) 

Cj(t) Ej(t) 


